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Foreword 

 

 

Dear reader, 

the handbook you have in front of you is a product of the "HYPOSO" project and at the same time a true product 

of European expertise and collegial cooperation. 

In addition to information on the history and on the application areas of small hydropower, this handbook shows 

and describes various technical solutions for the small hydropower sector. Valuable information on planning and 

financing models complete this book. 

Many thanks to all contributors of the handbook. The content was developed and written by renowned experts 

from the HYPOSO consortium. In order to describe the latest developments in the small hydropower sector, 

which also serve to exploit unused potentials and to increase fish-friendliness, contact was made with various EU 

initiatives and ongoing projects. Thanks go to the Horizon 2020 project "Hydropower Europe" for facilitating the 

contact with the expert Prof. Cécile Münch-Alligné, who also represents the Horizon 2020 project "XFLEX Hydro". 

Valuable input on fish-friendly concepts came from the Horizon 2020 project "FIThydro", represented by Lea 

Berg and Prof. Peter Rutschmann. Information on the latest opportunities in hidden hydro as well as turbine 

technology was supported by Vincent Denis, who is associated with EU projects as an evaluator. Below you will 

find some more information on the authors external to the project.  

In the hope that you will enjoy reading this handbook, I also hope that this book will help to deepen interest in 

small hydropower and provide a small support for the sector. 

 

 

Munich, December 2020 

 

Ingo Ball 

WIP Renewable Energies 

(HYPOSO Project Coordinator) 
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EASE European Association for Storage of Energy 

ECA Export credit agency 

EERA European Energy Research Alliance 

EIB European Investment Bank 

EN-ISO European Standard-International Organization for Standardization 

ERA European Research Area 

EREF European Renewable Energies Federation 

etc. Et cetera – and so forth 

EU European Union 

EUR EURO 

FEM Finite element method 

GFRP Glass fiber reinforced plastics 

GPS Global Positioning System 

GRP Glass reinforced plastics 

H2020 Horizon 2020 (a EU funding programme) 

HDPE High density polyethylene 

HPP Hydropower plant 
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HVOF High-velocity oxygen-fuel spraying 

i.e.  Latin: „id est“ – meaning „that is“ 

IBRD International Bank for Reconstruction and Development 

ICOLD International Commission on Large Dams 

IDA International Development Association 

IFC International finance corporation 

IGBT Insulated-gate bipolar transistor 

IHA International Hydropower Association 

IPP Independent power producer scheme 

IRENA International Renewable Energy Agency 

LCOE Levelised cost of electricity 

MBR Modified angled bar rack 

MFIs Multilateral finance institutions 

MGR Minimum gap runner 

MIGA Multilateral investment guarantee agency 

NGO Non-governmental organisation 

O&M Operation and maintenance 

ODA Official development aid 

OECD Organisation for Economic Co-operation and Development 

PAT Pump as turbine 

PE Polyethylene 

PLC Programmable logic controller 

PPA Power purchase agreement 

PSP Pumped-storage power 

PSW Private sector window 

PURPA Public Utility Legislation Policies Act 

PVC Polyvinyl chloride 

R&D Research and development 

RCC Reinforced cement concrete 

RE  Renewable energies 

RES Renewable energy sources 

RIA Research and Innovation Agenda 

SAM S-shaped Axial Machine (turbine) with an upstream elbow 

SAXO “SAXOphone”-shaped tubular turbine 

SHP Small hydropower 

SIR Strategic industry roadmap 

SMEs Small and medium enterprises 

SPC Special purpose vehicle/company 

SSA Social security administration 

Straflo Straight flow (turbine) 

TUM Technical University of Munich 
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US United States (of America) 

USACE United States Army Corps of Engineers 

USD US dollar 

VLHT Very low head turbine 

WACC Weighted-average cost of capital 

WBG World Bank Group 

WFD Water Framework Directive 

  

Symbols  

A Area 

B Width 

ß Angle 

c Sound celerity 

CO2 Carbon dioxide 

D Time/duration, hours 

D Diameter 

E Specific energy, J/kg 

 Raw power density 

f Power capacity surplus ratio 

f Frequency 

g Acceleration of gravity 

g  ̅ Average acceleration of gravity 

H Net head 

HS Suction head 

I Electrical current 

n Rotation speed 

nQ, nsQ, nsP Specific speed (various definitions) 

NPSH Net positive suction head 

P Power (mechanical or active electrical) 

p Number of poles in a generator  

pabs Absolute pressure 

pva Saturated vapour pressure 

Q Reactive electrical power 

Q Volumetric flow rate/discharge 

cos φ Power factor 

σTh Thoma cavitation number 

S Apparent electrical power 

T Torque 

TSR Tip speed ratio 

U Voltage 

v, V Flow velocity 
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ω Angular velocity, rad/s 

z Elevation 

ƞ Efficiency 

 Liquid density 

  

Units  

° Degree 

% Percentage 

a Year 

A Ampere 

GPa Gigapascal 

GW Gigawatt 

GWh Gigawatthour 

h Hour 

HP Horsepower 

kGm Kilogramme-metre (outdated unit of mechanical moment) 

km Kilometre 

kW Kilowatt 

l Litre 

m Metre 

m3 Cubic metre 

mm Millimetre 

MW Megawatt 

MWh Megawatthour 

Nm Newton metre 

rpm Revolutions per minute 

s Second 

V Volt 

VAr Volt-Ampere (reactive power unit) 

W Watt 
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1 Introduction 

 Introductory remarks 

Hydropower, especially Small Hydropower (SHP), has already shown in the past that it can play a decisive part in 

electrifying regions. It was not the first, however among the sources that enabled first electrification and elec-

tricity grids in Europe at the end of the 19th century. Major milestones (Walcher, 2020) included the first hydro-

electric installation in Northumberland (England) in1880, and the first three-phase current long-distance trans-

mission from a hydropower plant, from Lauffen/Neckar to Frankfurt/Main (Germany) in1891 for demonstration 

purposes during the World Expo in Frankfurt (Wessel (ed), 1991). And some years later, with the commissioning 

of Wynau HPP (Switzerland) in 1896, Paderno d’Adda HPP (Italy) and Rheinfelden HPP (Swiss/German coopera-

tion) in 1898, the history of modern European power grids was initiated (VDE, 2015). The technology was devel-

oped to very high standards in terms of efficiency, security and reliability and is used nowadays around the world.  

In recent years, hydropower was identified as indispensable element of the global energy system transformation 

(IRENA, 2019) and has grown around the world. Today, SHP is normally used in conditions, when large hydro-

power cannot be deployed, tapping also the sustainable potential that otherwise could not be used. Although 

being a clean energy source, hydropower and especially SHP have seen scrutiny and opposition in many cases 

when hydropower plants were erected without considering the latest technology and thus not providing all ben-

efits it can. 

The European hydropower industry offers the complete range of solutions and services to harness the potential 

of hydropower in a sustainable way, indeed for almost any conditions. Most important, European equipment 

distinguishes itself with a very high efficiency and can comply with even the strictest environmental laws and 

regulations. In the following chapters, together with general technical and historical information, information is 

given about these solutions to show how the European hydropower industry can contribute to sustainable en-

ergy provision. 

This handbook is not meant as recommendation to buy equipment only at the mentioned companies. In fact, the 

providers of the sustainable hydropower solutions are located across Europe and in business contacts should be 

made individually. The HYPOSO project provides therefore a list of public available contacts of the European 

hydropower industry: 

https://www.hyposo.eu/en/sector-information/sector-sector-information-europe/ . 

Furthermore, interested stakeholders from Europe and from the HYPOSO target countries Bolivia, Colombia and 

Ecuador in Latin America, and Cameroon and Uganda in Africa, are invited to participate at the so-called HYPOSO 

Platform which provides more information and is aimed at fostering business contacts in the sector: 

https://www.hyposo.eu/en/hyposo-platform/ . 

 Small Hydropower as a vital element for national electrification 

1.2.1 Grid connected 

Although many times being thought of as the perfect solution to electrify remote areas, in many cases Small 

Hydropower (SHP) is also a valuable contributor to grid stability in existing grids, be it in the form of steady base 

load generation from run-of-river plants, or as grid-stabilizer in the form of hydropower cascades in swell oper-

ation, storage installations and even pumped-storage power (PSP) plants. Especially, when countries need or 

want to develop locally balanced grids, integrating intermittent renewable energy sources like wind or solar in-

stallations, the benefits of SHP become visible. 
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SHP is a renewable energy source with low volatility and shows a beneficial impact on electricity grids, because 

it can feed-in a continuous output for a predictable period of time. The installed power use duration (in full load 

hours/year) depends on the installation type and water supply for hydropower generation. Generally, the plants 

used for regulation purposes and run-of-river ones in mountainous or sub-mountainous regions show low value 

of this parameter in distinction from the run-of-river ones located on water courses with high flow rate stability. 

The Stream Map project (ESHA, 2012) published for SHP an average number of 3,252 full load hours for the EU-

27 (then with the UK but without Croatia), which is higher compared with other renewable sources like wind 

(2,000 full load hours) and solar (914 full load hours) power plants. Recently, studies have been carried out in 

France (France Hydro Electricité, 2020) and Germany (Zdrallek, 2018) to investigate in detail the impacts of SHP 

to electricity grids. 

According to the calculations by Zdrallek (2018), in Germany (considered were 7,000 SHPs, each with a capac-

ity < 1 MW) 750 million EUR of additional needed costs for grid extension in the medium and low-voltage grid 

would need to be invested, if instead SHP, volatile renewable energy sources like wind power or PV should pro-

vide the same capacity. Furthermore, the grid expansion of distribution grids can be considerably reduced as the 

construction of thousands of kilometres of power lines can be avoided. If SHP are built in vicinity of the electricity 

consumers, as well network losses are reduced significantly. Through the good controllability, SHP can actively 

support maintaining the frequency and stabilizing the overall system (providing the so-called regulatory power). 

This fact plays especially a big role, when other conventional (fossil) energy sources are to be replaced. Due to 

the good controllability (active and reactive power), SHP furthermore can contribute to the important supply and 

voltage quality in distribution grids.  

If modified, SHP can also play the role of controllable and decentralized generators and can supply local mini 

grids (e.g. critical infrastructure like emergency services sectors) also in case of extensive blackouts. Not only 

storage plants, even run-of-river power plants could be used (without a loss of efficiency) as decentralised energy 

stores, when storage capacity in river impoundments is managed dynamically. In addition to the benefits for the 

grid, SHP and other HPP have another major benefit. Because of the relatively simple and robust construction, 

low maintenance costs arise and a long operating time (> 50 years) is possible, which leads to very low electricity 

generation costs. 

Of course, the absolute numbers shown here go only for Germany, and it needs to be stated that the operation 

conditions for SHP in Germany are the best in Europe. Thus, benefits can most probably be achieved, however 

not in the same dimensions as presented here. 

According to the French study (France Hydro Electricité, 2020), which focused on the role of France in the Euro-

pean power system, hydropower plays a primordial role for flexibility, providing a buffer for structural variation 

of the residual demand, covering residual demand forecast errors and providing rapidly dynamic contingencies. 

Without hydropower the system could not be maintained. To some extent, in an integrated scenario of the future 

of the European grid (for 2050), SHP can play a similar role as batteries regarding their modulation potential. SHP 

can furthermore have a business future if being used as ramping or new frequency reserve products, or as a local 

flexibility platform. Long term ancillary services and flexible capacities could be tendered and also scarcity pricing 

should be considered. What needs to be thought of still, is a fair and specific remuneration of the services pro-

vided by hydropower, which will be needed more in the future. 

1.2.2 Captive power supply 

The concept of Captive Power Plants is of growing importance on an international level especially in regions with 

unreliable grid supply (blackouts, brownouts, load shedding etc.), high grid tariffs/uncertain tariff developments 

or off-grid scenarios. In some regions, Captive Power Plants are also known as embedded generation, which 

could in some countries, however, be misinterpreted for power plants embedded in distribution grids. 
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Agricultural, commercial, or industrial companies are relying heavily on a reliable supply of sufficient energy to 

maintain a profitable and competitive operation. Therefore, instead of relying only on the grid supply, they are 

increasingly looking for dedicated power plants on or near their premises to cover their energy requirements. 

Captive Power Plants usually have a smaller generation capacity as they focus on the load demand of the specific 

target company only. Whether these power plants are: 

• grid connected or operating off-grid  

• owned and maintained by the company (prosumer) or supplying energy to the company as an off taker 

depends on the individual project situation and/or the national regulatory regime. 

While such power plants have in the past used fossil fuel generators (Diesel gensets) they are continuously being 

refurbished and now initially equipped with renewable energy sources to: 

• decrease dependency on fossil fuel, which must be delivered to the power plant on a continuous basis; 

• save costs as the Diesel prices are going up; 

• enhance the green footprint of the corporate consumer. 

The selection of the renewable energy source depends on the location of the plant. While some areas are perfect 

for PV or wind power plants, SHP is an excellent option where adjacent rivers offer a good energy potential. The 

agricultural industry, for example, is often operating near rivers which could be used for energy generation. 

An example is the Kenya Tea Development Agency (KTDA), the single largest tea producer in the world, is increas-

ingly relying on small hydro power for their tea factories. Through their wholly own subsidiary the KTDA Power 

Corporation (KTPC) they invested and manage in the first phase the 5.8 MW Gura SHP, the 5.6 MW North Mathi-

oya SHP and the 0.9 MW Chania SHP. There are more sites identified, which would have a good SHP potential in 

the next phase. 

The 5.8 MW Gura SHP-Plant is located high up in the Gura Valley in Nyeri County/Central Kenya. It was built in 

2016 and delivers a total of 18 GWh of electric power on an annual basis. The generated energy covers the energy 

demand of the 4 tea factories in Iriaini, Chinga, Gathuthi and Gitugi. The surplus energy is fed into grid of the 

state-owned utility KPLC under a power purchase agreement (PPA). Therefore it secures extra revenue to KTDA 

and enhances the stability of the public grid in the surrounding areas.  

Before the installation of the Gura SHP the factories were relying on the unstable public grid and Diesel gensets, 

which were used during the constantly occurring grid outages (Liu et al., 2019). 

Another technical approach in this regard is to generate energy based on recovery of energy lost in various tech-

nological processes. This kind of technical options are discussed in more detail in section 1.3.2 (Hidden Hydro) 

and at some further sites of this handbook. 

1.2.3 Mini-Grids 

The national grid development approach is usually focussing on achieving a single interconnected national grid 

with huge power plants feeding into the national transmission grid to provide energy to the distribution grids. 

Economies of scale and a full national electrification can be easily achieved, as well as the investment cost recov-

ered when having a high population density as well as economically attractive consumption loads. 

Such an approach, however, can be a challenge for countries with low population density especially in rural areas 

and with consumers having only small loads: A low population density results in high specific grid connection cost 

for individual households. In combination with a small monthly revenue it might take a long time for grid opera-

tors to recover the related investment cost (in some cases more than 20 years). 

Long transmission lines to bridge unpopulated areas and/or difficult geographic terrains to serve small commu-

nities beyond might not be economically viable. 
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However, as electrification drives the economic development it is an important determining factor to raise the 

prosperity level. Especially emerging and developing countries face economically difficulties to connect remote 

settlements through a centralised grid, which results in unconnected and underdeveloped regions. As example, 

in the Sub-Saharan Region about 57 % of the population, i.e. 612 million people, had no access to electricity by 

end 2018. 

This is where the Mini-Grid concept can be applied, which is based on an independent grid serving power con-

sumers within defined boundaries. Mini-Grids are typically isolated far away from the central grid in remote areas 

but could also be grid-connected in regions with an insufficient and unstable power supply. Grid connected Mini-

Grids switch to island mode once the central grid fails.  

There are various business models for the operation of Mini-Grids (Table 1) possible which can be summarised 

as follows: 

Table 1: Examples of Mini-Grid Operators (EREF, 2020) 

Private Sector Investors 
Investments might be made through Special Purpose Vehicles (SPV) 
having various shareholders; based on a licence/concession ob-
tained from the regulatory authorities. 

Energy Communities 
Emerging concept which might be included in the regulatory frame-
work; strong commitment from the benefiting community. 

Public Utilities 
Might act in line with a universal service obligation; electric power 
for the mini-grid could be bought from an Independent Power Pro-
ducer (IPP). 

 

Especially Energy Communities can be a driving force for Mini-Grids as they are slowly considered in national 

energy regulations also.  

While the Mini-Grids emerged initially in a legally grey area, countries are slowly considering them in their regu-

latory framework and as part of their national electrification strategy to boost rural electrification. 

The power generation is the heart of the Mini-Grid which can consist of a single unit or multiple electric power 

generation plants. There is no clear capacity range defined for Mini-Grids, with different sources using different 

ranges, however, one of the commonly used capacity range definition is 10 kW to 10 MW (MGP, 2020). 

Diesel generators used to be a core generation system in Mini Grids. However, as they increase the CO2 burden 

and require a constant supply of expansive fuel, renewable energy sources are slowly taking over. Where suitable 

hydrologic conditions are available the Small Hydro Power (SHP) segment is a perfect alternative to provide a 

reliable supply of renewable energy. The emerging kinetic turbines might offer even more flexibility to increase 

the applicability of SHP in Mini-Grid scenarios (see chapter 3.1.4 of this handbook for more details). 

The implementation of hybrid generation systems to reach a stable renewable power supply is increasing as the 

required control and power management systems have reached technical maturity. SHP can operate stand-alone 

alone or in a hybrid-system, for example, with PV-Solar to address seasonal fluctuation and peak demand. 

An example is the Mini Grid in the Ludewa District in Tanzania (ACRA, 2020) supplying hydroelectric energy to 

20 isolated rural villages and connecting 4,000 households with approx. 51,000 people as well as 340 SMEs, 

schools and a hospital plus health services. The implemented SHP has a capacity of 1.7 MW with a total annual 

production capacity of 9,000 MWh and replaced various highly polluting individual Diesel gensets in the villages. 

The project is managed by an Energy Users Entity (EUE). 
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It should be noticed that even in countries with national grids covering whole or almost whole territory the mini 

-grid concept finds ever more wide interest as rapid development of distributed intermittent electricity sources 

raises demand for local balancing of grid parameters. The response are energy clusters supplying the so-called 

smart grids. The smart grid concepts generally assume some energy storage capacities provided by batteries and 

storage or even pumped storage SHPPs. The advantage is not only increased inertia of the national grid portion 

and decrease of energy losses due to long distance transmission of regulation power, but also increased electric-

ity supply safety as the concept assumes usually isle operation in case of a large scale black-out. 

 The innovative European SHP industry provides sustainable solutions 

1.3.1 Innovative strength of the European Small Hydro Industry 

Hydropower has been an important component of European industrial identity since ancient times. A direct link 

between hydropower and the more or less institutional world of science can be counted at least since the times 

of Leonhard Euler, an 18th century Swiss born genius and father of the hydraulic turbine theory. While the 

19th century saw parallel development of hydropower industry at both sides of the Atlantic ocean with two sig-

nificant turbine types (Francis and Pelton) invented in the US, it was in Europe where the first long distance 

electricity transmission took place, the third most significant turbine type (Kaplan) was developed later on and 

three giant manufacturing companies emerged. The systematic technological development having taken place 

over the previous century has covered all aspects of hydropower industry including civil, hydraulic, mechanical 

and electrical engineering. Due to high significance of the sector and high level of competence required, relevant 

technical courses were introduced at most European technical universities and numerous technical colleges. The 

universities took over also a major part of necessary research and partially also research and development effort 

with Lausanne, Zurich, Grenoble, Munich, Stuttgart, Trondheim and some other locations in the foreground. The 

hydropower industry concentrated mainly in Alpine countries (especially France, Germany, Switzerland and Aus-

tria), but also Scandinavia (Norway and Sweden) and the former Soviet Union (today: Russian Federation and 

Ukraine). Manufacturers of various size and numerous consulting and engineering offices are active today also 

in the Czech Republic, Slovenia, Italy, Poland and some other countries.  

The incomprehensive list of main technological progress having taken place over the recent decades includes: 

1. widening the operating range and the capacity regulation capabilities as well as increasing specific speed 

and efficiency of hydraulic units - both by optimising the flow system geometry and introducing the variable 

speed technology; 

2. enhancing cavitation properties of hydraulic turbines and improving their resistance to erosive surroundings 

(by various techniques, including adequate shaping of the flow system, introducing additional arrangements 

such as anti-cavitation strips at the runner blade edges and partial load rope disintegrating fins within the 

turbine suction area, by air injection systems and finally - by applying erosion resistant materials and pro-

tective coatings spread by innovative techniques); 

3. new design and increased technical parameters of such crucial structural hydraulic unit nodes as bearings, 

seals, regulation mechanism actuators and relevant safeguards; 

4. new electrical equipment technology, including generators with variable speed operation capabilities as 

well as electrical switch board and safeguard equipment; 

5. introducing the completely new regulation and control system technology, allowing for unmanned opera-

tion with remote supervision of both hydraulic units and the whole hydropower installations or even river 

cascades; 
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6. new auxiliary equipment and technologies, including inflatable weirs, valves and gates, trashrack cleaners, 

upstream and downstream fish passage systems, such as passive and active fish ladders, fish guiding barriers 

etc. 

The main stimulus for enhancing the performance and cavitation properties of hydraulic turbines by optimising 

the flow system geometry was the progress in the CFD and other related flow analysis and computerized design 

techniques, including solving the inverse problem in fluid mechanics as one of the flow system design ap-

proaches. The achievements in other directions have appeared possible as a part of the general progress in tech-

nical sciences and in particular as an implementation of new ideas in such technological branches as material 

science and machinery manufacturing technology (including CAM and more generally – CAE techniques), fluid 

control technology (including high pressure hydraulic systems) and electrical engineering, including electrical 

power electronics. A profound impact on all the aspects of hydropower engineering was exerted by dynamic 

development of computer science and related digital technologies. 

In addition to the rising technical requirements following mainly from economic reasons and strong European 

market competition, a significant impulse for progress in numerous directions came from ever more stringent 

environmental requirements. These have lead in particular to replacing traditional oils in the lubricated systems 

by biodegradable ones and complete removal of oil from numerous shaft and guide vane bearing systems.  

The environmental constraints have substantially confined new large hydro projects in Europe directing most of 

equipment production to other continents. In practice, only the projects representing a part of major schemes 

oriented on substantial reduction of environmental burdens by other sectors (e.g. by taking over a part of land 

road transport by inland navigation) or on mitigation of climate change effects (e.g. by flood protection as well 

as water and energy storage) have a realistic chance to be pushed forward.  

The situation is different with small hydropower sector (up to 10 MW capacity according to the EU statistics and 

legislation) where ever rising environmental constraints have still left space for innovation or even stimulated 

completely new designs. In particular, the support from public means has allowed to develop a number of inno-

vative low head and hydrokinetic units, some of them especially attractive for non-European markets with pos-

sible application at sites with no access to the national grid.  

The significance of hydropower both as a contributor to the green electricity mix and ever more importantly as 

a regulating tool in the grid operator hands is ever more recognized in the EU and other countries linked with EU 

by various more or less tight collaboration schemes, such as. The significance attributed to the sector by the 

European Commission is clearly demonstrated by direct contact with such hydropower related global and Euro-

pean associations as IRENA, Eurelectric, and the EREF Small Hydropower Chapter. Hydropower is well visible in 

various initiatives undertaken within the European Research Area (ERA) which in addition to the EU Member 

States includes also such hydropower heavy weight players as Norway, Switzerland and Turkey.  

One of recent initiatives within the ERA is establishing the Joint Project “Hydropower” within the European En-

ergy Research Alliance (EERA) which is an umbrella body grouping European research centres and universities 

with the mission to catalyse energy research for a climate-neutral society. The main purpose of the “Hydropower 

Joint Project” is to facilitate collaboration and coordinate research activities in order to raise their effectiveness. 

A current initiative of even higher strategic significance for the whole sector is the “Hydropower Europe” project 

sponsored within the Horizon 2020 framework research programme. The key purpose is developing the hydro-

power related Research and Innovation Agenda (RIA) and the Strategic Industry Roadmap (SIR) for the next fi-

nancing perspective.  

In addition to projects aimed at providing the European Commission with analyses necessary for rational strat-

egy towards the sector, numerous R&D and demonstrative projects are in progress, just to mention HydroFlex 

(Increasing the value of Hydropower through increased Flexibility), AFC4Hydro (Active Flow Control system FOR 

improving HYDRaulic turbine performances at off-design Operation), ALPHEUS (Augmenting grid stability through 
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Low-head Pumped Hydro Energy Utilization & Storage), XFLEX HYDRO (Hydropower Extending Power System 

Flexibility), FIThydro (Fish friendly Innovative Technologies for Hydropower), SHYDRO-ALP, DAFNE, KEEPFISH, 

Hykinetics as well as HYPOSO and RES-34-2020 promotive and demonstrative projects (Schleker, 2020). As it can 

be seen, rising hydropower technical capabilities to contribute to grid flexibility is considered high priority both 

for large and small hydro. Another key research and development objective is increasing hydropower sustaina-

bility by minimising unwanted environmental impacts on biodiversity and biological con-tinuity. Among other 

strongly supported development trends on should mention also implementation of small hydro technology for 

recovery of energy lost by throttling in industrial and municipal hydraulic systems. These and a lot of more de-

tailed research and development trends add to high quality of the European small hydro related industrial offer. 

The main areas of this offer will be briefly characterised in the next two chapters. 

1.3.2 Exploring Hidden Hydro 

The term “hidden hydro” addresses often this part of hydropower potential which is either based on the data 

not included in the national hydropower potential surveys or can be used in a more rational way than nowadays.  

1.3.2.1 Energy Recovery and Harvest 

The first group refers in particular to: 

1. energy recovery in industrial and municipal hydraulic systems; 

2. energy recovery in irrigation systems; 

3. energy recovery in desalination stations and other industrial systems; 

4. residual flow outlets at existing dams and weirs; 

5. energy recovery in fish bypass systems; 

6. energy harvest in navigation lock gate bypass conduits; 

An extensive overview of these and other opportunities to extract energy out of flow systems in existing water 

infrastructure was given by Choulot, Denis, and Punys (2012), and when Choulot, Denis et al. gave an overview 

of the best practises and set of 24 case studies in Europe (2010). 

Municipal Drink and Wastewater Systems 

Energy recovery of hydraulic energy lost in municipal hydraulic systems is the most apparent kind of hidden 

hydro. The interest in such systems can be dated at least since the 1900s (Sonzier hydropower plant, Switzerland) 

and was initially limited to mountainous, mainly Alpine, countries where especially favourable conditions existed 

due to substantial differences in altitude of possible energy recovery sites (Figure 1). The pressure at inlet to the 

drinking water treatment plants (DWTP) or storage reservoirs appears often too high and has to be reduced using 

pressure reduction valves or break pressure tanks which can be replaced by the hydraulic energy recovery units. 

The most notable example of such an installation is the Mühlau power plant with 5,750 kW capacity and ca 450 m 

head. The plant is owned by the Innsbruck Municipal Works (Austria) and was commissioned as early as 1951. 
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Figure 1: Layout of a drinking-water network and possible positions of the turbines  
(Choulot, Denis and Punys, 2012) 

The need of pressure reduction may occur also at some other sites of the municipal water networks, including 

inlet to the water supply network or a part of it. 

Waste water outlets from the waste water treatment plants are also in the focus, as they offer also substantial 

potential (Bousquet et al., 2017). Waste water turbining before treatment is also possible, as it is the case in Le 

Châble in Switzerland, where the wastewater collected in the ski resort of Verbier is turbined before entering the 

wastewater treatment plant set in the valley. With a head of 450 m, the installed capacity is 380 kW with a 

production of around 0.85 GWh/year. Another relevant example is the As Samra site in Jordan, where two tur-

bines are installed before the inlet of the wastewater treatment plant (2 x 830 kW, 104 m) and three at the outlet 

(2 x 750 kW and 1 x 490 kW, 42 m). Altogether, the five turbines are producing around 19 GWh/year (Denis, 

2019). 

Generally, Pelton turbines are preferred as long as the flow and head suits to this type of turbines, the advantage 

being their capacity to follow the flow changes all along the day. Francis turbines are also often used in case of 

medium heads and flow. Pumps in turbine operation regime (see section 3.1.3) can be used for sites with poten-

tial up to 100 kW and with fixed flow, considering the absence of flow regulation possibility and low efficiency. 

As it is the case for any hydropower project, the choice of the appropriate turbine type will always be the result 

of a technical and economic analysis. 

Hydraulic energy recovery from municipal networks gains an ever more rising interest in Europe and is sup-

ported by a number of European projects, such as HYDRO-BPT, LifeHyGENET or Life NEXUS. It is worthwhile to 

notice that following the data from the end of previous decade in Switzerland alone the annual electricity gen-

eration from energy recovery in municipal water network was close to 85 GWh with a remaining potential of 224 

GWh.  
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Irrigation Water Systems 

Irrigation water adductions can also be used to generate electricity as it is the case with the Armary hydropower 

plant in Switzerland (105 m, 68 kW). Low head applications, using Kaplan or bulb turbines, are also possible in 

irrigation channels, as in Petiva in Italy (6 m, 875 kW). 

A comprehensive case study on the consideration of a hydropower plant associated to an existing irrigation sys-

tem at the lower Awash basin in Ethiopia has been prepared as part of a Master thesis at the IHE Institute of 

Water Education in Delft (Tesgera, 2018). In this case the electrical energy can be extracted from an existing 

system without hindering its main function linked to food production, representing an added value for the owner, 

for the local population and for the environment. Although not being implemented yet, it is a very good example 

as various possible solutions to exploit the hidden hydro opportunity are outlined. 

Desalination stations and other industrial systems 

The tradition of hydraulic energy recovery in European industrial installations stems also at least from the middle 

of the 20th century and is linked mainly with the thermal power and chemical industries. Thermal power plants 

– both conventional (e.g. coal or gas fired) and nuclear ones – generally require large amounts of water for cool-

ing purposes. After leaving the cooling system the cooling water is discharged to the nearby reservoir or river 

which is a good opportunity to recover a part of the energy used for pumping the fresh water into the system. A 

typical example of energy recovery in the chemical industry is applying hydraulic turbines to extract energy from 

the gas scrubbing process. Dedicated units have been offered for years by Sulzer (Franzke, 1970 and Sulzer, 

2020). Biogas scrubbing offers new opportunities in addition to the traditional applications in fertilizer factories 

(Bansal and Marshall, 2010). 

Desalination plants provide another opportunity in countries in necessity to use this technology due to fresh 

water deficits in ever wider extent. The technological process requires always huge amounts of energy. In case 

it is based on the osmosis phenomenon, depressurising the remnant salt concentrate provides an obvious op-

portunity for hydraulic energy recovery (Choulot, Denis, and Punys, 2012 and Huang et al., 2020). Of course, 

highly corrosive aggressiveness of the medium is one of technological disadvantages, which is however solved 

by appropriate choice of material (duplex steels). 

It is important to mention that the turbines installed in cooling systems or in desalination plant are recovering 

energy only, as the water has been pumped before being turbined. There is no electricity production, but a re-

duction of the electricity consumption of the pumps. In the case of drinking, irrigation and wastewater tur-bining, 

there is a real electricity production, as the pressure is given by the difference in elevation between the inlet and 

the outlet as it is the case in any classical hydropower scheme. 

Residual flow outlets in existing dams and weirs 

Using residual flow outlets at existing dams and weirs is rather an old, but still attractive opportunity to recover 

otherwise dissipated energy by means of traditional small hydro technology. When the released flow is nearly 

constant, pumps in turbine mode of operation can be a reasonable choice. However, environmental regulation 

is more and more requesting variable residual flow, depending, among others, on the season. In that case, Pelton, 

Francis or Kaplan turbines are needed. 

Minimising the loss of hydropower potential in fish passage systems is possible by regulating the discharge ac-

cording to the fish migration seasons whereas partial recovery of energy used for driving the so called active fish 

ladders (lifts) is effected in the Archimedes double-screw systems (see section 3.1.5). 

Navigation lock gate bypass conduits 

Recovery of hydraulic energy lost when raising or lowering water level in navigation lock chambers is an oppor-

tunity ever more realistic in view of advent of variable speed technology allowing running hydraulic units with 
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reasonable efficiency at highly variable head (Zhangh et al., 2018). The opportunity can be considered especially 

attractive in case of new infrastructure linked with development of new or restoring old inland navigation routes. 

1.3.2.2 Uprating of inefficient/abandoned SHP-Plants 

The second group of hidden hydro encompasses already harnessed sites with hydraulic energy getting lost due 

to 

1. unsatisfactory performance characteristics of hydraulic units installed including discharge spilled at existing 

installations due to obsolete technology/design or some other technical reasons; 

2. non-optimised operation of units (especially double-regulated), multi-unit hydropower plants, or power 

plant groups (especially river cascades). 

Rehabilitation and upgrading, including replacement of turbine components or whole units, is always an option 

to be considered in the first case and the European industry can offer expertise and technical solutions necessary 

for solving technical problems.  

While optimizing double-regulated turbine cam curves can be considered a routine activity, optimized operation 

of multi-unit power plant and plant group is by far not a simple task, usually solved using contemporary software. 

Hydropower digitalization is fairly advanced in numerous European companies and the relevant software can be 

adopted for users worldwide. 

1.3.3 Fish friendly Innovative Technologies for Hydropower 

With its efficiency, relatively low costs, technical maturity and low CO2 footprint as well as its reliability and pre-

dictability, hydropower maintains a prominent position amongst renewables in the European Union. The poten-

tial for hydropower development in the EU is extensive, especially considering that many existing hydropower 

plants will need to undergo refurbishment and upgrading in the coming years to conform to the environmental 

objectives of EU legislations, such as the EU Water Framework Directive.  

FIThydro, Fishfriendly Innovative Technologies for Hydropower, is a 4-year EU Horizon2020 research and inno-

vation action with 26 partners (13 research, 13 industry) from 10 European countries, involving several of the 

leading companies in the renewable and hydropower energy sector in Europe. The project’s aim is to test and 

develop cost-effective environmental solutions, strategies and measures to ensure self-sustained fish popula-

tions and increase the ecological compatibility of existing and new hydropower schemes.  

Special emphasis is placed on the application and enhancement of technologies, methods, tools, and devices at 

17 test cases across Europe. These test cases were chosen to represent some of the main challenges facing 

hydropower development in four regions across Europe, namely Scandinavia, the Alpine region, France and Bel-

gium for Northwest Europe, and the Iberian Peninsula. Scenario modelling in different geographic, climatic, and 

topographic test case regions will allow the quantification of effects and resulting costs for different mitigation 

options in Europe.  

The key outputs from the project are two-fold: 1) A set of novel risk assessment and decision making tools to 

help practitioners evaluate, plan and find solutions for fish-friendly hydropower, and 2) a number of innovative 

and improved methods, tools and devices to address key challenges related to the assessment of self-sustained 

fish populations and fish-friendly hydropower production.  

The investigations for new and improved solutions centre around four relevant impact areas: upstream migra-

tion, downstream migration, habitats and flow, and sediments. As a first step, an extensive review of existing 

methods, tools and devices and their application range was conducted (see Dewitte, 2018). A selection of suitable 

tools was then applied, tested, enhanced and developed at test cases and in laboratories across Europe (see 

Dewitte and Laurent, 2019). These include devices to improve the assessment of fish behaviour at hydropower 
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plants, fish guidance and protection systems, assessment methods for upstream and downstream migration fa-

cilities as well as tools for the assessment of impacts from hydro-peaking.  

Innovative and improved methods, tools and devices 

Barriers such as dams and weirs pose a major obstruction to migrating fish. Fishways are the most common way 

to bypass the barrier and enable (upstream) fish migration and many have been installed at hydropower plants 

in Europe. However, their actual effectiveness is often unknown. To address this, the findability of the fishway 

entrance and fish swimming behaviour during upstream migration is studied at several FIThydro test case sites. 

Sufficient “attraction flow” from the fishway is seen as one of the important stimuli for fish to find the fishway 

entrance. For a more accurate assessment of how fish perceive this flow and consequently increase its effective-

ness, the iRon Lateral Line Probe has been developed. It mimics the lateral line sensory system used by fish in 

nature and is the world’s first lab- and field ready instrument to capture ‘flow from a fish’s perspective’. 

Another important aspect for effective upstream migration is the downstream migration habitat, which can in-

fluence fish swimming behaviour. The CASiMiR-Migration software was developed further with input from test 

case results to model fish swimming path during upstream migration by mimicking fish behaviour. Additionally, 

the software is used to model migration corridors for different flow rates, enabling an assessment and potential 

improvement of the available habitats for upstream migration. These new tools can support the planning of new 

and assessment of existing solutions for upstream migration, such as the construction of fishways. 

While solutions for upstream migration have been extensively studied over the last decades, there is a lack of 

solutions and design standards for downstream migration. FIThydro addresses this issue in several ways. Fish 

guidance and protection structures are often installed in the headwaters to reduce fish injury and mortality, but 

effective fish protection settings can also cause increased head losses and more turbulent turbine admission 

flows. The newly developed Curved-Bar Racks (CBR) are mechanical behavioural fish protection and guidance 

structures that provide both, high fish protection and guidance efficiency as well as a significantly improved hy-

draulic performance. The CBRs are suitable for medium to large hydropower plants with high design discharges 

(Q > 100 m³/s) and high approach flow velocities and could be an alternative to fine-screened horizontal bar 

racks for small hydropower plants (Beck, 2019). 

In many cases, the only way for downstream migration of fish is to pass through the turbines. The Induced Drift 

Application is a protection system that is installed directly in front of the turbine and increases the survival prob-

ability of fish during turbine passage by a factor of two. This is done by guiding and immobilizing fish before the 

turbine runner passage. It provides an effective and cost-efficient way to improve the survival rate of fish during 

turbine passage and is especially applicable for retrofitting of existing large-scale run-of-river hydropower plants. 

To quantify the hydraulic conditions during downstream turbine passage, which can lead to pressure induced 

mortality, and to gain accurate measurements, the Barotrauma Detection System (BDS) was developed and ap-

plied at several test sites. The BDS passes the turbine the same way that fish do and collects information on the 

pressure and inertial changes that fish experience. The recorded data allows the assessment of impacts from 

turbine passage and can be used to identify where turbine passage is acceptable. Furthermore, the BioPA fish 

passage model developed in the US, was adapted to European conditions resulting in best practice guidelines for 

the application of turbine fish mortality modelling using BioPA (see Stoltz and Geiger, 2019). The turbine hazard 

modelling enables a case specific adaptation of turbine operation modes during fish migration periods.  

Next to impacts and mitigation measures for fish migration, the availability and use of habitats is studied at sev-

eral test sites. This ranges from the creation of additional spawning and rearing habitats in fishways to studying 

the impacts of hydropeaking on fish behaviour and habitat availability. The CASiMiR-Hydropeaking software is 

used to simulate impacts of hydropeaking on downstream habitat availability, allowing an adaptation of hydro-

power operation and development of mitigation measures. Additionally, the Hydropeaking Impact Assessment 

tool extended to Iberian cyprinids, enables the assessment of direct effects from hydropeaking as well as of the 
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vulnerability of fish species to hydropeaking. By assessing existing or planned hydropeaking, possible risks and 

mitigation measures can be identified. 

Novel risk assessment and decision making tools 

To support the risk assessment and decision making process of operators, engineers and authorities, FIThydro 

also developed a number of risk assessment and decision making tools. The Fish Population Hazard Index is the 

first European-wide guidance and assessment tool for fish hazards in hydropower environments (Wolter, 2019). 

It is an environmental impact assessment tool for existing and planned hydropower plants that supports the 

implementation for sustaining and improving local fish populations. To assess the impacts of several consecutive 

hydropower plants and dams in a single river basin and evaluate the population response to different mitigation 

measures applied, FIThydro also developed the Cumulative Impact Assessment tool (Cowx, 2020). 

The more comprehensive Decision Support System (DSS) allows an assessment of risks to fish populations in 

hydropower affected rivers and helps the user to select appropriate mitigation measures. The DSS considers the 

specific hydropower plant characteristics, national environmental status assessments as well as environmental 

and conservation policies and mitigation requirements. Information on possible mitigation measures as well as 

a description of the methods, tools and devices can be found in the FIThydro wiki.  

The FIThydro outputs support managers, engineers, ecologists and hydropower operators in the assessment, 

planning, commissioning and operation of ecological compatible and fish-friendly hydropower schemes. They 

are of relevance for the planning of mitigation measures for specific hydropower plants as well as for broader 

processes such as river basin management planning under the WFD. The results and tools are accessible via the 

FIThydro website where more information on the project can also be found. 
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2 Small Hydropower Systems 

 Low head or high head 

The hydropower plant head and discharge are key parameters of any existing or planned hydroelectric installa-

tion. The plant head is the difference of liquid mechanical energy per unit weight as measured at plant inlet and 

outlet. For classification purposes it is usually enough to identify it with its gross value defined by the difference 

of the upper and tail water levels. This simplified approach may appear insufficient when high accuracy is re-

quired or a hydraulic energy recovery installation with no free liquid surface available at either side is considered. 

In such cases the plant head should be calculated from the formula H = E/�̅� with  

𝐸 =
𝑝𝑎𝑏𝑠1 − 𝑝𝑎𝑏𝑠2

�̅�
+

𝑣1
2 − 𝑣2

2

2
+ �̅�(𝑧1 − 𝑧2) 

representing the specific hydraulic energy related to the unit mass of liquid, and pabs, v and z standing for absolute 

pressure, average flow velocity and elevation taken at the inlet and outlet installation reference sections 1 and 

2, respectively (IEC 60041, 1991). In case of high head installations some differences between liquid density and 

acceleration of gravity,  and g may occur and therefore mean values have to be used.  

The division between high, medium and low head installations is a matter of stipulation. Traditionally, hydro-

power installations with head above 70 m have been considered high head plants and those with head below 

30 m – low head ones. More modern classification rules use the 50 and 15 m thresholds, respectively. In addition, 

in case of small hydropower installations, the terms of very low head (< 5 m) or ultra low head (< 2.5 m) are 

occasionally used. 

There are multi-aspect reasons for such categorization. Those related to mechanical engineering aspects follow 

from differences in the type of hydraulic turbines and other hydropower engines applied in the consecutive head 

intervals. Figure 2 illustrates such a division for a wide range of turbines as offered by the Escher Wyss company 

(nowadays Andritz Hydro). Typical application range limits for small hydro turbines are shown with dashed lines. 

The diagram should be considered only an indicative one. Especially in the small hydro area where the limits are 

much more manufacturer dependent (e.g. for small hydro it is common to have Pelton turbines for heads below 

100 m). The net head used to characterize hydraulic turbines is lower than the gross one as used to characterize 

the hydropower installation. The reason lies in situation of reference sections and levels which have to be taken 

at the turbine inlet and outlet in the first case. In particular, the lower reference section of reactive turbines is 

taken at the draft tube outlet whereas turbine runner axis or its lowest edge elevation are used in case of impulse 

turbines. In case of low head installations the difference may be linked in greater extent with kinetic energy loss 

at the draft tube outlet whereas hydraulic losses in the penstock may be of key significance in case of the high 

head units. Hydraulic energy is always related to the lower reference level and therefore the word-ing “energy 

difference” is generally omitted in relevant considerations. 

The use of specific hydraulic energy and other related terms is often preferred by modern standards as they 

address directly the physical nature of the energy conversion process. Furthermore, they allow also getting free 

of the acceleration of gravity impact on the turbine performance parameters when reporting the performance 

test results which usually include determining the turbine or unit efficiency from a rather obvious ratio 

𝜂 =
𝑃

𝜌𝑄𝐸
 

with Q and P denoting respectively the discharge and usable power defined according to the needs and/or stip-

ulations. Due to tradition and obvious practical reasons, the head parameter is in much wider use than the spe-

cific hydraulic energy, especially in case of small hydro, for which guarantee requirements are formulated in a 

much softer way than those related to the large hydro equipment. 
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Figure 2: Application range of various kinds of hydraulic turbines as offered by Escher Wyss, now Andritz Hydro 
(Raabe, 1985) 

The situation with hydrokinetic turbines is different and resembles that of wind turbines. The specific energy 

parameter is to be replaced by that of raw power density  [W/m2] or power flux P [W] passing the turbine rotor 

(runner) swept area and calculated as 

 = 0.5V
3 and P = A 

With  denoting the water density and V – its undisturbed flow velocity. The hydraulic efficiency parameter is 

replaced by that of power coefficient which represents the ratio of useable power extracted from a stream of 

fluid passing the turbine rotor (runner) swept area A to the raw kinetic energy flux P = A of this stream. Following 

the Betz law, the turbine power coefficient is limited to the theoretical value of 16/27  59.3 %. The limitation 

follows mainly from the flow continuity law. In case no additional measures – such as locating the runner in a 

nozzles or flumes - are undertaken in order to increase local flow velocity, the true power coefficient value is 

always smaller than that following from the Betz law. Further reduction can follow from the limited flow channel 

cross-section or parallel operation of several hydrokinetic units. Extracting a major portion of kinetic energy – 

especially in artificial canals – results in a damming effect and changing conditions downstream the installation 

according to the principles of free surface flow hydraulics. 

All gravitational engines are low head units. Water pressure remains the same at the machine inlet and outlet. 

Potential energy of gravity between machine inlet and outlet is converted into useable work. Only in some cases 

(Zuppinger wheel) kinetic energy may also contribute to the process. 

Generally, widening the range of hydropower applications both in terms of power and head, and especially de-

cisive decreasing the lowest head limit – including commercializing hydrokinetic technology – is quite apparent 

over the passing decades. However, the progress affects not only the hydraulic machinery used in hydropower 

installations. An even more significant impact is exerted on civil engineering works discussed. In case of both high 

and low head installations European companies can offer enhanced dam erection and maintenance technologies, 

including high quality structural materials and new materials used especially for sealing purposes (e.g. geotextiles 
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applied at the dam upstream side) as well as dam safety monitoring systems. Successful implementation of 

fusegate technology (Chevalier, Culshaw, and Fauquez, 1996) for ensuring dam safety and the widening use of 

inflatable weirs for lowest head installations are also to be mentioned in this context. 

 In-stream or diversion installations 

Hydropower plants classification can follow different criteria (Raabe, 1985 and Giesecke and Mosonyi, 1998). 

One of them is the powerhouse location respective the dam. In case of numerous installations, diversion scheme 

with water delivered to the turbine(s) via a pressurized diversion conduit (penstock and/or tunnel with concrete 

lining) is necessary in order to make use of the full gross head available.  

Generally, diversion schemes allow to convert hydraulic energy into electricity far away from the water abstrac-

tion site. The great advantage is possibility to use relatively low weir in order to achieve high or very high gross 

head. In case of some small high head installations erection of any major weir can be avoided as water intake is 

located directly in river sill or at the weir downstream side (drop-in intakes). 

Old riverbed in diversion schemes can be generally used as a natural bi-directional fish pass although one has to 

count with very high residual flow necessary in mountainous regions. However, diversion schemes are applied 

also at relatively low heads, allowing to use hydropower potential in case of moderate river bed slopes while 

avoiding extensive flooding and infrastructure costs. The typical diversion scheme starts with a weir dividing the 

flow between the old river bed and the diversion conduit which – depending on local topography – remains often 

unpressurised in its upper part (water supply canal) and ends with water intake forebay. The size and length of 

both unpressurised and pressurized diversion portions follow from optimization aimed at attaining high head 

with low hydraulic losses and still reasonable erection costs. The pressurized conduits are often furnished with 

surge towers in order to avoid excessive water hammer accompanying transient states of operation (see sec-

tion 3.6.3). A typical example of such a hydropower scheme is shown schematically in Figure 3. 

 

Figure 3: Schematic of a small hydro diversion scheme (Gatte and Kadhim, 2012) 

In case of some low head installations only non-pressurised short diversion canals are used with the task to by-

pass the main water course and deliver water to the intake located in direct neighbourhood of the existing dam 
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or weir (Figure 4 and Figure 5). Erecting a power plant at an originally dry land has its obvious advantages, espe-

cially if damming by the already existing weir is to be used. In case of a very short diversion the configuration is 

very close to that of a river bay hydropower installation (Giesecke and Mosonyi, 1998). 

 

Figure 4: Run-of-river hydropower plant with a short diversion canal (EN 61116, 1992) 

 

 

Figure 5: Malczyce SHP (9 MW) - Oder river, Poland (Wody Polskie, 2020) 

The in-stream power plants can be incorporated into the dam structure (Figure 5) or located at the dam basis on 

its downstream side. The typical in-stream hydropower plant configuration can be classified into several catego-

ries according to powerhouse situation respective the dam or weir (Giesecke & Mosonyi, 1998): 

1. block configuration with powerhouse located in one block at one riverside; 

2. twin configuration with powerhouses at two sides of the river; 

3. distributed configuration with hydraulic units located in dam segments between the pillars. 
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In case using a part of the dam for the powerhouse purposes could create problems for conducting the flood 

waters or river navigation some special configurations such as  

4. bay configuration with power plant located in a river bay excavated at one riverside 

5. overflown (submerged) power plant located beneath the overflow spillway or even below the weir stilling 

basin 

 

Figure 6: In-stream run-of-river SHP located at the left riverside (EN 61116, 1992) 

In most cases of low head in-stream or short non-pressurised diversion schemes, it is essential to make sure of 

adequate flow pattern at the power plant inlet. Improper flow pattern can result in increased forebay hydraulic 

losses, fall of power capacity and generation. Different capacity of neighbouring units running at the same gross 

head is a typical result. The most reliable optimisation is generally conducted basing laboratory model tests sup-

ported by CFD calculation. Figure 7 shows resulting shaping of the inlet canal cross-section in a low head power 

plant at Oder river in Poland. The purpose is to attain equal discharge through two neighbouring pit turbine units. 



34 SHP technologies - European state-of-the-art innovations 

 

Figure 7: Shaping the inlet canal of Januszkowice SHP (1.5 MW) - Oder river, Poland  
(source: IMP PAN archives) 

There is a continuous progress observed in planning and technology used for erecting diversion and in-stream 

power plants. Increased capacities available for tunnel drilling and new lining technologies should be mentioned 

in case of medium and high head installation. High experience in surveying potential new SHP sites and develop-

ing low head power plants using damming by means of the already existing weirs are also important aspects of 

the progress. 

 Run-of-river or storage 

The terms used in the heading of this subsection may seem self-explanatory. However, due to storage capacity 

being always more or less limited, it is worthwhile to remind the classification proposed in the 1990s by Unipede-

Eurelectric (Punys, Dumbrauskas, Kasiulis, Vyčienė, Šilinis, 2015). The classification uses time D, the annual aver-

age inflow needs to raise water level in the forebay by the power generation designated layer. Following this 

approach the power plants with a D parameter smaller than two hours are generally considered the run-of-river 

ones. 

The run-of-river schemes are furnished with no reservoir at all or only a small one. If not in a cascade, they are 

incapable to fulfil any regulation functions. In numerous countries run-of-river installations dominate in the small 

hydro sector. It is always important that their discharge capacity range is wide enough. If in a compact cascade, 

they can consist a component of a regulating system supporting both water management and electrical grid 

needs. 

The hydropower schemes featured by a higher D parameter are often merged into the same group with reser-

voirs classified as those with daily, weekly or seasonal levelling duration. It should be emphasized at this place 

that storage in case of a hydroelectric installation implies always storage of both water and mechanical energy 

which can be converted into electricity at any suitable time. This notice is of importance as in numerous cases 

storage hydropower plants are just components of major multipurpose projects and their erection cost may 

represent only a small portion of that of the upper water reservoir, constructed mainly for the purposes of water 

retention, irrigation and/or flood protection. In view of the ongoing climate change such public or public/private 

investment schemes are of rising significance. Hydropower plants located at reservoirs built mainly for water 
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retention and irrigation purposes are often small installations, capable for a regulatory role in a local grid, e.g. 

isolated and/or a smart one. 

Erecting larger storage plants generally requires also a tailwater reservoir, usually furnished with another hydro-

power plant responsible for alimentation of the downstream river reach. Further increasing regulating capacities 

is possible also by erecting a cascade. In case the cascade is to be operated in the so-called swell regime only the 

last stage should be furnished with a reservoir of capacity enabling regular outflow irrespective of discharge at 

the upper stages. The intermediate stages should show discharge and storage capacity allowing only to avoid the 

unwanted water level fluctuations in course of swell operation. If the cascade is compact enough, large capacity 

variations are possible with scarce impact on the water level at intermediate stages. 

 

Figure 8: Schematic of a compact river cascade capable for swell operation without major water level  
variations at the intermediate stages (Michałowski and Plutecki, 1975) 

The scheme incorporating upper and lower reservoir can be used also for pumped storage purposes. The ever 

rising use of intermittent electricity sources results in growing demand for regulatory services covering not only 

peak load operation, but also compensation of electricity supply fluctuation, including absorption of energy sur-

plus in the grid and its storage. The demand for such services concerns not only the national grid which requires 

large projects, but also local ones. In case of small isolated grids, combining solar and/or wind based electricity 

sources with small storage or pumped storage hydroelectric schemes may be just the most appropriate solution. 

They can be also considered a component of a hybrid power plant with one grid connection point for various 

electricity sources. 

The investment costs of small pumped-storage installations can be sometimes lowered by using two hydraulic 

machines (pump and turbine) instead of a dedicated pump-turbine. Various configurations are possible, including 

those of a hydraulic short-circuit with a triple machine unit (Figure 9). Small capacity pumped storage has gained 

substantial interest in Europe since the beginning of this century and therefore there exists already substantial 

know-how in this respect. 
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Figure 9: Schematic of a triple machine unit run in a hydraulic short-circuit system in Geesthacht PSPP 

(Germany). The same system can be replicated in a smaller scale  
(Bellmann, Sebestyen, and Wührer, 1999) 
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3 Overview of Hydropower System Components 

 Hydraulic turbines and gravitational hydropower machines 

3.1.1 Introductory notes 

Turbines are generally divided into impulse and reaction ones with reactivity degree defined as the ratio between 

the runner inlet/outlet pressure difference height and the net head. Typical examples of impulse turbines are 

Pelton and Turgo turbines featured by equal static pressure at the turbine runner inlet and outlet. Kinetic energy 

of water jet(s) leaving the turbine nozzle(s) is converted here in the useful kinetic energy of the hydraulic unit 

rotating assembly. In case of classic reactive turbines (Francis, Deriaz, Kaplan and other axial-flow ones) the pres-

sure difference height is generally comparable with head. The degree of reactivity can be increased by applying 

draft tubes which increase turbine discharge and efficiency as referred to the gross head by lowering the static 

pressure downstream the turbine runner. This is of especially high significance in case of classic low head tur-

bines.  

The hydraulic turbine principle of operation is based on exchange of angular momentum between the onflowing 

water and the runner which is expressed quantitatively by the basic equation of turbines, known also as Euler 

equation. Gravitational water engines, such as Archimedes screw or SteffturbineTM hydraulic units, are some-

times called water turbines as well although they are hydrostatic machines, put in motion by the weight of water 

filling the buckets. The high significance of Archimedes screw based hydroelectric units in small hydro applica-

tions follows from various reasons which will be discussed in subsection 3.1.5. 

Performance factors and characteristics 

Turbine size and rotation speed selection for a specific application is generally based on similarity laws following 

from assumption of full geometrical and kinematic similarity of the flow systems. The resulting similarity factors 

have been written down following the nomenclature and symbol designation of the IEC 60193 (2018) model test 

standard (Table 2). Slightly modified factor definitions are to be used in case of cross-flow turbines which dis-

charge is proportional to the runner width B by diameter D product and not the D2 value. 

Table 2: Non-dimensional and dimensional performance parameter factors (IEC 60193, 2018) 

similarity factor non-dimensional dimensional 

rotation speed factor 𝑛𝐸𝐷 = 𝑛𝐷 𝐸0.5⁄  𝑛𝐻𝐷 = 𝑛𝐷 𝐻0.5⁄  

discharge factor 𝑄𝐸𝐷 = 𝑄 𝐷2𝐸0.5⁄  𝑄𝐻𝐷 = 𝑄 𝐷2𝐻0.5⁄  

torque factor 𝑇𝐸𝐷 = 𝑇 𝜌𝐷3𝐸⁄  𝑇𝐻𝐷 = 𝑇 𝐷3𝐻⁄  

power factor 𝑃𝐸𝐷 = 𝑃 𝜌𝐷2𝐸1.5⁄  𝑃𝐻𝐷 = 𝑃 𝐷2𝐻1.5⁄  

 

The mentioned similarity factors represent values the respective quantities would take in a similar flow system 

with unit reference diameter D [m], operating at unit specific energy E [J/kg] or net head H [m], respectively. 

Due to this reason the 11 subscripts are used instead of HD in some traditional national nomenclatures to de-

scribe the dimensional factors. It is to be mentioned that a consistent system of units with rotation speed n, 

discharge Q, torque T and power capacity P expressed in 1/s, m3/s, Nm and W, respectively, is used to derive the 

non-dimensional factors. Angular velocity factor is also used sometimes instead of the rotational speed one. The 

dimensional factors are usually derived using the same quantities expressed in rpm, m3/s, kGm and kW units. In 

practice, the reference diameter and head values are often introduced into the formulae without units when 
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calculating the dimensional factors. Eventually, all the dimensional factors are expressed in the original physical 

units. 

Despite some inaccuracies - mainly due to viscosity related scaling effects, quite apparent far from the best effi-

ciency point of operation (bep) - the similarity laws are of paramount significance when conducting model tests 

and using their results for planning new hydropower plants. In fact, the basic performance characteristics includ-

ing the efficiency hill chart (Figure 10) as well as the four-quadrant discharge and torque characteristics are usu-

ally plotted in the coordinate systems defined by the abovementioned dimensional or non-dimensional factors. 

 

 

Figure 10: Normalised efficiency hill charts in the (nHD/nHD opt, QHD) plane for a Pelton turbine (a), low and high 
specific speed Francis turbine (b and c, respectively) and a Kaplan turbine (d). (Raabe, 1989) 

Normalisation concerns rotation speed and efficiency. The discharge factor is expressed in l/s. Francis turbine 

wicket gate openings are shown as fractions of the full opening value. 
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Specific speed and tip speed ratio 

Hydraulic similarity considerations have lead also to introducing the term of kinematic specific speed which is 

defined as the rotation speed of a hydraulic turbine of unit reference diameter running under unit head or spe-

cific energy with unit discharge and showing full geometric and kinematic similarity of its flow system to the one 

of the turbine under consideration. The respective non-dimensional and dimensional formulae are as follows 

𝑛𝑄 = 𝑛 𝑄0.5 𝐸0.75⁄ = 𝑛𝐸𝐷𝑄𝐸𝐷
0.5      and      𝑛𝑠𝑄 = 𝑛 𝑄0.5 𝐻0.75⁄ = 𝑛𝐻𝐷𝑄𝐻𝐷

0.5 

There is some ambiguity in these definitions as performance parameters used may refer either to the best effi-

ciency or to the rated operation point. This may be of significance in case of Kaplan turbines, for which the dis-

charge at the best efficiency point constitutes often only 3/5 of the rated value. An angular velocity based "sci-

entific" definition of the specific speed is widely used in the French hydropower engineering literature. 

In the past, the so called dynamic specific speed representing rotation speed of a hydraulic turbine of unit refer-

ence diameter running under unit head and providing unit power output was often in use. The relevant definition 

formula is 

𝑛𝑠𝑃 = 𝑛 𝑃0.5 𝐻1.25⁄  

 

with the power output value P expressed usually in HP (horsepower) units. Some ambiguity in the relationship 

between the nsP and nsQ parameters follows from the need to assume the turbine efficiency value. The approxi-

mate practical relationship is nsP = 3.65 nsQ. 

The specific speed is called also the runner shape or turbine type number as it is directly linked with the optimum 

turbine type and runner geometry (Figure 11). High specific speed designs are both economically and technically 

advantageous as they allow reaching high discharge capacity and power output by units of relatively small size. 

This is of especially high significance in case of low head units operating in shallow waters and requiring high 

discharge factors in order to avoid unacceptably large runner diameters and excessive installation costs. 

 

Figure 11: Classic turbine types as dependent on the specific speed parameter (Raabe, 1989, after Voith) 
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The physical interpretation of the discharge factor QHD definition is directly linked with famous Torricelli formula 

and shows proportionality between the average axial velocity Vax and the head root H0.5 which can be written 

down as Vax  QHD H0.5. This observation allows to notice that the specific speed coefficient nsQ is directly pro-

portional to the expression 

𝜔𝐷

2𝑉𝑎𝑥
𝑄𝐻𝐷

1.5  

with  [rad/s] denoting the angular velocity of the runner. In case of hydrokinetic turbines the coefficient  

TSR = 0.5D/Vax 

with Vax = V standing for velocity of the undisturbed flow, is called the tip speed ratio as it represents the ratio 

between runner peripheral velocity and that of the undisturbed flow. The TSR parameter cannot be called a 

shape number. Nevertheless, Figure 11 shows that it is possible to correlate the TSR value with the recom-

mended hydrokinetic turbine type and its power coefficient. The diagram is based on the wind turbine literature 

(Menet, 2004, and Wilson and Lissaman, 1974) and shows power coefficients of various wind turbine rotor types 

including those of historical Dutch and traditional American windmills, 2- and 3-bladed airscrews, and two cross-

flow ones, meant here as those featured by fluid stream entering and leaving the rotor space in direction per-

pendicular to the shaft axis. As the aerodynamic machines and their components have been often used to study 

performance of the hydrodynamic ones, the modified Wilson and Lissaman diagram is still widely used to explain 

differences in performance of various hydrokinetic turbine types. 

 

 

Figure 12: Typical parameters of wind power rotors (Saini and Saini, 2019 after Menet, 2004, and  
Wilson & Lissaman, 1974) 
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Cavitation and slurry erosion 

An increase in the specific speed value above that shown in Figure 11 is generally limited by cavitation phenom-

ena which are unavoidable in case of high local velocities, also those due to presence of unsteady whirl struc-

tures, responsible for occurrence of deep depression areas and cavitation. Cavitation is a result of lowering the 

liquid static pressure below certain critical value (close to the saturated vapour pressure) which leads to an ex-

plosive growth of microscopic vapour/gas bubbles (cavitation nuclei) as it comes to breaking the quasi-static 

equilibrium between the ambient liquid pressure and bubble surface tension on the one side and the vapour/gas 

mixture pressure inside the bubbles on the other side. The same result achieved by increasing the vapour pres-

sure due to heat transfer is generally known as boiling. Of course, both are different from the steady bubble 

growth which usually precedes the phenomenon and may be partially due to the dissolved gas diffusion through 

the bubble surface. 

In fluid-flow systems the liquid depression areas are limited and it is possible that bubbles merge before leaving 

them, forming major fluctuating cavitation structures, often attached to the solid surface. Increasing vapour con-

tent in the working medium and development of major cavitation structures can substantially affect the whole 

flow field and turbine performance. However, from the viewpoint of hydraulic machine structural integrity, even 

more important are phenomena taking place when performance fall is still scarcely noticeable. 

The collapse of cavitation bubbles and other cavitation structures due to their transfer into the areas of increased 

pressure or to pressure fluctuation shows an implosive character and results in a number of detrimental dynamic 

effects, including noise, turbine structure and shaft vibration, erosive damage to the flow confining surfaces. High 

aggressiveness of the phenomenon follows from sudden deceleration of liquid surrounding the collapsing bub-

bles which gives rise to high amplitude pressure waves. If the collapse is affected by a solid wall presence, emer-

gence of a cumulative microjet can be also expected. Eventually, the solid surface is hit with pressure pulses of 

amplitude reaching locally values as high as several GPa, fully capable to exert substantial erosive damage (Figure 

13). 

 

Figure 13: Extensive cavitation damage at the suction side of a small Francis turbine runner 
(1970s, source: IMP PAN archives) 

Cavitation is affecting not only hydraulic machinery and equipment, but also such civil engineering structures as 

hydropower water intakes. Vortex cavitation developing in large hydraulic structures of non-optimised geometry 

can show really spectacular effects, including cavitation damage holes with depth measured in meters.  
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In this context it is to be noticed that cavitation is not the only wear mechanism endangering hydropower ma-

chinery. Slurry erosion due to gravel, sand and silt transported with flowing water presents a serious threat to 

structural integrity of numerous hydraulic machines and equipment, especially those operated in streams and 

rivers taking their origin in mountainous areas and/or featured by frequent flood water surges. Typical examples 

of vulnerable machinery components are Pelton turbine nozzle needles and runner buckets. The situation may 

get even worse in case silty water starts to cavitate as synergistic effects due to accelerated impact of solid par-

ticles onto the streamlined surface are quite probable. On the other hand, synergistic effects with electrochem-

ical corrosion are probable in some industrial energy recovery systems. One should bear in mind that electro-

chemistry affects most cavitation erosion processes although its contribution may be dominated by the mechan-

ical factors. 

The key method to mitigate cavitation damage of hydraulic machinery and equipment is proper design of the 

flow system, usually supported by reliable CFD simulations and model tests. The use of such construction 

measures as anti-cavitation strips in Kaplan turbines is also to be mentioned in this context. Sometimes CFD 

simulation can be also helpful in lowering the slurry erosion risk. However, the key measure to mitigate slurry 

erosion is proper design of water intake and all accompanying arrangements so as to minimize solid particle 

transport into the turbine flow system.  

Whenever cavitation and/or slurry erosion load are unavoidable, selection of highly resistant structural material 

is of paramount significance. As the required technological and mechanical strength properties may appear in-

compatible with increased erosion resistance requirements, protective coatings have to be used. In addition to 

some traditional and troublesome techniques the European companies have developed within the recent dec-

ades a number of innovative technologies such as spreading carbide coatings – e.g. by means of the HVOF tech-

nique - or “painting” the streamlined surfaces with elastic composites. Substantial progress concerns also the 

post-damage repair technology. 

The vibro-acoustic cavitation effects can occur irrespectively of cavitation erosion and are particularly intense in 

reactive turbines run under the partial load conditions. Especially spectacular are highly unwanted effects of 

collapsing cavitating vortex ropes. In some cases they can lead to powerful water hammer in the draft tube and 

pressurized outlet conduit if any. The situation may appear quite dramatic in case of hydraulic resonance be-

tween the vortex rope and the pressurized tailrace.  

A phenomenon resembling cavitation and occurring in case of pressure inside a penstock falling below the satu-

rated vapour pressure level is liquid column separation. In fact, significant underpressure inside the penstock is 

linked with high risk of penstock collapse. On the other hand, the final phase of liquid column separation can lead 

to penstock bursting due sudden stopping of liquid masses closing the cavity form both sides.  

The key quantity describing cavitation threat to a reactive hydraulic machine is the so called Net Positive Suction 

Head (NPSH) defined as 
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with pabs and pva denoting the ambient and saturated vapour pressure values, v2 - average liquid velocity at the 

turbine outlet (draft) tube outlet and Hs - suction head defined as the difference between the turbine reference 

level and the free surface tailwater level (Figure 14). If needed the suction head value should be increased by the 

height of hydraulic losses inside the outlet conduit. Due to its physical interpretation, the NPSH parameter is also 

called the anticavitation suction head surplus in some national nomenclatures. Further modification of the defi-

nition, including direct reference to the specific energy concept, is required in case the turbine is installed in a 

closed conduit, e.g. in a hydraulic energy recovery system, with no open tailwater reservoir. 
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Figure 14: Positioning of the reactive turbine reference levels. Arbitrary shaft axis orientation (IEC 60193, 
2018) 

Establishing the allowable NPSH or suction head value basing on the laboratory model test results is possible by 

using the Thoma cavitation number 

Th = NPSH / H 

which represents the key hydraulic turbine cavitation similarity parameter. Determining the allowable cavitation 

number under laboratory conditions is based on monitoring the rise of basic diagnostic signals, such as pressure 

fluctuation, vibration and acoustic emission supported by visual observation while lowering the Thoma number 

value and keeping the rotation speed factor at constant level. The allowable cavitation number is often by over 

two times higher than the critical one, corresponding to the abrupt turbine efficiency fall. 

Despite some ambiguities in the technique of determining the allowable cavitation number under lab conditions, 

there exists a statistically and theoretically confirmed dependence (Figure 15) on the specific speed value, often 

approximated by the formula 

𝜎𝑇ℎ 𝑎𝑙𝑙𝑜𝑤𝑎𝑏𝑙𝑒 = (𝑛𝑠𝑄 𝑆𝑄⁄ )
4 3⁄

 

with 𝑆𝑄 = 𝑛 𝑄0.5 𝑁𝑃𝑆𝐻𝑎𝑙𝑙𝑜𝑤𝑎𝑏𝑙𝑒
0.75⁄  denoting the suction specific speed and varying usually between 0.85 and 1.0 

for Francis turbines and between 0.65 and 0.8 for Kaplan ones (with lower values corresponding to higher specific 

speed) (Pfleiderer and Petermann, 1986). 
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Figure 15: Cavitation limit curves vs specific speed coefficient (after Arndt, 1981) 

3.1.2 High head turbines 

Pelton turbine 

Among various hydraulic turbines, the Pelton turbine (Figure 16) is the machine most suitable for high head, 

generally greater than 200 m for large hydro and 80 m for small hydro. Invented in the US in the second half of 

the 19th century, the Pelton turbine is widely used in Europe, especially in Alpine countries, and manufactured 

by numerous European producers, including both the largest ones and those oriented exclusively on the small 

hydro sector. 

The world record of the most powerful Pelton turbine is 423 MW. The turbine is run at almost 1,870 m head in 

the Bieudron storage hydropower plant in Switzerland. The smallest units provide less than 100 kW on drinking 

water networks for a minimum head of 60 m. This turbine, which can be of horizontal or vertical axis, consists of 

a manifold distributing the flow to one or more injectors, a runner made up of shaped buckets and the pit. This 

type of turbine is an impulse ("action") machine since the hydraulic power is transferred to the runner in kinetic 

form through the jets, the runner rotating in the air. Therefore there is no static pressure difference at the runner 

inlet and outlet. The number of injectors is limited to two for a horizontal axis turbine, while there may be up to 

six injectors for a vertical axis Pelton turbine. The turbine power is adjusted by a needle valve, located inside the 

injector, whose stroke variation will modify the jet cross-section and consequently the flow. Jet deflector 

mounted at the nozzle end takes care of almost immediate cut-off of the runner propulsion without dangerous 

water hammer which would be inevitable when using the needle valve for this purpose. The jet being deviated, 

it is then possible to close the nozzle slowly. 
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Figure 16: The 7 MW Pelton turbine of Gletsch Oberwald (CH) Hydropower plant (source: FMV SA) 

The runner converts the hydraulic power into mechanical power. This mechanical power transferred to the tur-

bine shaft is then converted into electrical power by the generator. For small hydropower, this type of turbine is 

often installed on drinking water networks or at diversion type run-of-river small power plants with the con-

straints of an atmospheric pressure at the outlet. In case of a needed residual relative pressure at the outlet, 

counter pressure Pelton turbine can ensure such conditions (a small compressor is used to pressurize the casing 

and keep the downstream level sufficiently below the runner). Thanks to its injectors, this machine can maintain 

a good efficiency (90 % and more) over a large variation of the discharge. Nevertheless, head variation of multi-

jet units is limited due to Falaise effect consisting in interaction of an impacting jet with water having not left 

completely the bucket after the previous impact (Perrig, 2007). 

In small hydro, Pelton turbines are widely used in drinking water turbining schemes and on run-of-the-river sites 

with high head and strong flow variations. 

Turgo turbine 

The first prototype of Turgo turbine was designed by a British engineer Eric Crewdson and manufactured by 

Gilbert Gilkes & Co Ltd (today Gilbert Gilkes & Gordon Ltd) as early as 1919. Since then the company remains the 

main supplier of Turgo with reference list of over 1,000 units.  

 

Although developed as a far going modification of L. Pelton’s design, the Turgo turbine concept (Figure 17 and 

Figure 18) resembles directly that of a traditional Balkan bucket wheel mill in which the unpressurised wooden 

 

Figure 17:  Schematic of single jet Turgo unit 
(Mala voda, 2020) 

 
Figure 18: A simplified Turgo turbine model 

(Hartvigsen Hydro, 2020) 
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conduit has been replaced by a pressurised piping with a modern needle nozzle and the wooden bucket wheel – 

by an optimised steel runner. A copy of a 19th century Turgo predecessor is exposed in the German Museum of 

Science and Technology in Munich. 

The contemporary Turgo turbines are highly optimised units offered by Gilkes in 16 vertical and horizontal shaft 

versions for small hydro applications within a head range between 100 and 300 m and up to 10 MW capacity 

limit. Some other companies offer Turgos also for lower heads. According to Gilkes (2019) the main advantages 

of Turgo turbines include simplicity of construction, reliability (especially when handling silty or abrasive water) 

and good efficiency for a wide range of flows. In fact, the turbine efficiency is only slightly below 90 %. The Turgo 

turbine shows also a higher specific speed than a Pelton one of the same capacity which implies higher output 

at the same size. 

3.1.3 Medium and low head units 

This group of hydropower machinery is especially rich one as in addition to the traditional turbines with mixed- 

(Francis), diagonal- (Deriaz), axial-flow (propeller and Kaplan) runners it covers also cross-flow turbines, pumps 

as turbines and such innovative designs as VLHT (Very Low Head Turbine). 

Francis turbine 

With its roots reaching S. Howd’s US patent of 1836, and further contribution of such designers as J.B. Francis, 

C.L. Fink, A.M. Swain, A. Pfarr and others, the radial-axial flow turbine called after the name of its “re-inventor” 

and enhancer, reached substantial maturity as early as the end of the 19th century. Shortly afterwards Francis 

turbines represented already the most widely used water turbine type with head range from well below 10 me-

ters up to several tens and some time later - several hundred meters (up to 700 m). Today, Francis turbines with 

capacity well over 800 MW (Xianjiaba Hydropower Plants, China), are the most powerful hydraulic turbines used 

worldwide. Although their significance in the field of low head hydro fell gradually with ever wider deployment 

of the V. Kaplan’s invention of axial-flow runner blade adjustment system, still in the beginning of 1980s the low 

head Francis turbines were able to keep their predominating position among micro and mini hydropower instal-

lations. Most of low head applications concerned turbines installed in an open turbine chamber –sometimes 

formed as a semi-spiral one - with external wicket gate (guide vane) adjustment mechanism. Horizontal (single 

and twin turbine) configurations with shaft passing through the turbine chamber wall were very frequent (Figure 

19). The essential change came with advent of compact double-regulated axial-flow (tubular) units with a number 

of technical advantages and reasonable price level. 
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Figure 19: An old fashioned small low head Francis turbine configuration (after Hoffmann (ed.), 1992) 

Today, Francis turbines remain still the optimum solution for numerous small hydro power installations with a 

head above 10 m. Their advantage is due not only to the reasonable price, but also to high quality of the flow 

system, manifested by high efficiency and satisfactory cavitation properties. The last feature allows installation 

with positive suction head and reduced civil engineering work costs. The modern small Francis turbines (Figure 

20) are usually equipped with a steel spiral case and modern wicket gate safety mechanisms, e.g. with gaseous 

springs. Advanced composite materials are used for seals and water lubricated slide guide bearings as applied in 

vertical configurations. 

 

Figure 20: A modern Francis turbine in a refurbished Polish hydropower plant (source: IMP PAN archives) 

Francis turbines of above 100 kW capacity are often used in the energy recovery systems, in which one cannot 

guarantee constant flow conditions (e.g. urban water supply systems). The disadvantage of this type of turbines 

is rather steep efficiency vs discharge characteristics (Figure 21). In case of large turbines great care must be 

attributed to the partial load operation which in the past was often allowed only down to 60 or 65 % of the full 

load. The partial load dynamic effects are generally much less detrimental in small units. Nevertheless, also in 

this case care is usually taken nowadays to take partial load operation into account already at the turbine design 

stage. 
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Figure 21: Typical efficiency curves of hydraulic turbines (Raabe, 1989) 

Axial-flow turbines 

Axial-flow turbines with adjustable guide vanes (propeller turbines) were known already before World War I, but 

it was the V.Kaplan patent on regulated runner blading which brought a major breakthrough in the end of war 

period. Double regulation had allowed running the turbines with good efficiency over a wide range of discharge 

which was of fundamental significance for operation under variable hydrological and/or grid conditions. Due to 

this reason, within the next decades Kaplan turbines covered the whole low and medium head turbine applica-

tion area (Figure 2). Moreover, the efficiency characteristics of single regulated turbines with adjusted runner 

blades (so called semi-Kaplan units) has appeared much less steep and therefore more advantageous than that 

of propeller turbines. This observation had a profound impact on development of low head turbines for small 

hydro sector. The classic Kaplan turbines are equipped with radial distributors comprising spiral or semi-spiral 

cases, as well as radially positioned stay and guide vanes (Figure 22). In some small installations, a siphon config-

uration is used. 

 

Figure 22: Classic Kaplan turbine in siphon configuration. Marktbreit SHP (H =2.5 m, P =1100 kW) -  
Main, Germany (source: Raabe, 1985, after Voith) 

An innovation of high significance for low head applications was the introduction of tubular units - originally 

proposed as straflo (straight flow) ones by L. S. Harza, then implemented by Escher Wyss both in bulb and straflo 

versions in a number of rather small German installations. In the 1960s and 1970s, both concepts eventually 
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evolved to units mounted mainly in large hydropower plants. The characteristic feature of these designs was 

mounting the generator with gearbox inside the unit bulb or using the turbine runner as a generator rotor (with 

stator windings located at the runner chamber rim). The obvious advantage of tubular design in comparison with 

the classic (with radial distributor) one is efficiency increase due to avoiding the 90 bending of the flow direction 

and substantial decrease in the amount of required civil engineering works. The disadvantages include relatively 

large bulb size, high costs of unit installation, maintenance and overhaul. These aspects and some technical prob-

lems – mainly with sealing - had prevented their wide use for a longer time – especially in small hydro applica-

tions. In fact, the highly “elegant” classic straflo units are not widely used today, even if they may appear highly 

successful in some special applications (e.g. StrafloMatrix by Andritz). In the meantime, the term “straflo tur-

bine” was extended also to small tubular turbines furnished with runner external rings used as a pulley of a belt 

speed increaser transmitting the mechanical power on the generator shaft (see section 3.3.2). 

Irrespective of the mentioned Escher Wyss units, manufactured till 1951, the first small capacity tubular turbines 

were mounted in configuration with turbine shaft passing either through the delivery piping or draft tube el-

bow(s). In each case elbows must be designed with great care so as to avoid possible blocking of the flow. Some 

of these designs have appeared highly successful and are applied still today. The best established configuration 

is probably that of horizontal turbine with double elbow draft tube, usually called an S-turbine (Figure 23). In 

case of sufficiently high runner elevation the second elbow can be omitted. This option is recommended espe-

cially in small siphon installations in which case the use of a long heavy draft tube could be highly problematic.  

 

Figure 23: Schematic vertical section of a low head SHP with an S-type tubular turbine. (After IEC 61116, 1992) 

An example of a vertical shaft semi Kaplan siphon turbine with the shaft passing through the double elbow outlet 

tube is shown in Figure 24. This configuration is used in quite small installations. Its advantage is high simplicity 

and easy installation. Unfortunately, substantial hydraulic losses can be expected in the siphon and the draft 

tube. 

From the point of view of hydraulic losses, letting the turbine shaft to leave the flow system through the inlet 

elbow is generally considered more advantageous. Figure 25 shows an example of a single elbow semi-Kaplan 

turbine configuration often considered the best matched to siphon applications. 

S-Kaplan 
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Figure 24: An inversed propeller or semi Kaplan turbine 
in a double elbow siphon configuration 
(ESHA, 2004) 

 

Figure 25: Semi Kaplan turbine in a single elbow  
siphon configuration (ESHA, 2004) 

One of the best established tubular turbine configurations with shaft passing through the inlet side elbow is SAXO 

(Figure 26). Its main advantage in comparison with classic vertical Kaplan unit is saving space needed to erect the 

spiral case. However, as it can be seen from Figure 27 even higher savings in the civil engineering works (espe-

cially excavation), can be achieved by implementing horizontal configurations with a smooth inlet elbow passed 

the shaft (SAM configuration according to the former Alstom nomenclature (Czerwinski, Canas, and Marin, 2012). 

A disadvantage is of course the positioning of the runner immediately after the elbow, which results in in-homo-

geneous onflow conditions. 

 

Figure 26: Kaplan turbine in SAXO configura-
tion (Gale et al., 2010) 

 

 

Figure 27: Comparison between excavation work needed for 
classic Kaplan turbines (2 units) and 4 tubular 
SAM turbines (4 units) with the same total capac-
ity (Czerwinski, Canas, and Marin, 2012) 

Efforts made to take full advantage of the tubular turbine flow system features and resign completely of the inlet 

and outlet elbows resulted already in the 1970s in the so called pit arrangement (Figure 28) with generator and 

gearbox located in a concrete pit flown around from two sides. Pit configuration is quite frequent in case of 

hydropower installations with capacity over 500 kW. Substantial progress in CAM techniques and material quality 
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refinement technology as applied to tooth gear manufacture allowed some time later to spread successfully 

another configuration. Nowadays, compact units with bevel speed increaser and induction electrical engine used 

as generator (Figure 29 and Figure 30) are probably the most frequently installed low head generating sets in a 

wide range of capacities - both in double and single regulated version. 

 

Figure 28: Tubular Kaplan turbine in pit arrangement  
(ESHA, 2004) 

 

Figure 29: A compact semi-Kaplan unit with 
bevel speed increaser  
(ESHA, 2004) 

The above mentioned progress in the mechanical engineering technology has shown also an impact on planetary 

gearbox implementation in compact submersible axial pumps. High gearbox ratio enabled using small size elec-

trical engines and accommodating both devices in a small diameter capsule (bulb). The same design was applied 

in the end of the previous century in axial flow submersible turbines offered by some European companies. Later 

on, with advent of permanent magnet generators and spreading the electrical frequency conversion technology, 

this design stepped down from the foreground. The technological progress having taken place enabled omitting 

the gearbox, applying variable speed induction or permanent magnet synchronous generators and passing the 

task of securing the required frequency at the local or national grid connection point to the frequency inverter 

and other electrical power electronic equipment. Furthermore, the above solution has provided an additional 

hydroelectric unit regulation tool. 

 

Figure 30: A typical compact unit with bevel speed increaser. Oborniki SHP, Poland (source: IMP PAN archives) 

Induction and permanent magnet generators are used among others in Hydromatrix and StreamDiver units de-

livered by Andritz Hydro (Figure 31) and Voith, respectively Cui et al. (2007), Keuneke (ed.) (2014) and Voith 
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(2020). Both are recommended for single and multiunit installations with scarce place and possibility to conduct 

any civil engineering work, e.g. at navigation and irrigation dams as well as abandoned ship locks. 

 

 

Figure 31: Hydromatrix® axial-flow units as offered by Andritz for installation in locks or weir gates 
(Cui, Binder and Schlemmer, 2007) 

Another application of the permanent magnet hydro generator is that of the Very Low Head Turbine (VLHT) unit 

as developed by French engineers of MJ2 in the first decade of this century (Leclerc, 2008). Their main purpose 

is to harness the low head potential created by small weirs furnished with regulating gates. The concept was to 

replace the existing gate by a flap one comprising a large diameter axial-flow hydraulic unit with adjustable run-

ner blades and variable speed permanent magnet generator. No civil engineering intervention except replace-

ment of the gate is needed. Furthermore, low runner speed allows for keeping high efficiency without a draft 

tube and to avoid injuring fish passing the turbine (see section 3.9). The unit is recommended for operation with 

heads between 1.4 and 3.4 m (Figure 32). 

 

Figure 32: A VLHT unit at outlet of the Milleau canal (Leclerc, 2008) 
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Diagonal turbines 

The diagonal runner concept of P. Deriaz has allowed the inventor to introduce double-regulation into the me-

dium head operating range. This is considered to be of particular value in case of large head variations, charac-

teristic for medium head pumped storage installations. Runner blade adjustability has allowed to improve unit 

performance also in the pumping mode of operation. Wicket gate system is applied alternatively - in radial or 

diagonal configuration. As mentioned, the design is applied mainly in medium head pumped storage installations, 

although it is suitable in SHP run-of-river installations with higher flow variations. 

Nevertheless, it was only in the previous decade when a single regulated turbine with Deriaz runner was devel-

oped by the Mhylab company (Montcherand, Switzerland) with the aim to provide higher flexibility in the mid 

head range than that offered by traditional Francis turbines. The axial type distributor with stiff guide vanes 

resembles the one used in some tubular semi-Kaplan turbines (Figure 33). The turbine is generally installed in 

vertical Z-type (SAXO) configuration. The assumed range of application is up to 1 MW with head between 20 and 

80 m (Denis, Cottin and Choulot, 2016). 

 

Figure 33: The Mhylab diagonal turbine (Denis, Cottin and Choulot, 2016) 

A double regulated diagonal turbine was then developed by Mhylab for the same range of head with 8, 10 and 

12 runner blades configurations. 
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Figure 34: The Mhylab diagonal turbine (Bullani and Denis, 2019) 

 

Cross-flow turbines 

The last medium head turbine to be mentioned in this survey is a cross-flow turbine, called also Banki-Michell 

one after the names of its independent inventors – Donat Banki, a professor of the Budapest University of Tech-

nology and an Australian engineer, A.M. Michell. Although the manufacturers are located worldwide, the most 

renowned one is the Bavarian company Ossberger. The company has introduced some important refinements. 

Due to this reason the turbine is called also Ossberger turbine (Figure 35). 

 

Figure 35: Cross-flow turbine according to the Ossberger concept (Ossberger, 2018) 

The Banki-Michell turbine is essentially an impulse machine with a nozzle controlled by a single guide vane or a 

cylindrical gate blocking smaller or large portion of the runner periphery. The liquid leaving the nozzle hits the 

blades located at the cylindrical runner periphery, passes the runner internal space and crosses the blade cascade 

ring again when leaving the runner. Therefore it is considered sometimes a double stage machine with lower 

runner edge level used as reference when calculating the net head. The turbine shows some degree of reactivity 

which can be controlled by an air valve or an optional draft tube. Due to energy loss between the runner lower 

edge and the tailwater, the turbine is generally not recommended for the lowest head. This limitation has been 

removed by a Czech engineer, M. Cink, who developed a reactive version of the turbine (with a draft tube) known 

under his name (Pucher, 1996). However, due to high cavitation risk, the recommended application range of 

reactive cross-flow turbines had to be shrunken to 1 - 3 m with sure impact on efficiency. Cavitation in a cross-
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flow turbine can lead to significant vibro-acoustic and erosive effects. Precautions to avoid water penetration 

into the bearings are needed if bearing pitting is to be avoided (CINK Hydro – Energy, 2020). As vibration may 

occur also in non-cavitating turbines, stiffening reinforcements are often applied between the runner blades. 

This measure does not only improve the runner strength properties, but also moves its resonance frequency 

upwards – possibly above that of hydraulically generated vibration stimulations. The disadvantage is lowering 

the efficiency due to increased friction losses and increased risk of clogging in case trashracks do not prevent 

inflow of leaves and weeds. 

The Banki-Michell turbine efficiency – with head measured to the lower runner edge – is often below 80 % and 

always below 85 %. The reason lies mainly in the design not allowing to keep to the design inflow angle at whole 

runner circumference crossed by the stream of liquid, the highly turbulent flow nature inside the runner and 

some other effects leading to energy dissipation. Nevertheless, the turbine is considered still a robust and cost-

effective option in numerous small hydropower applications. 

The advantages include pretty simple and easily repeatable design and maintenance. The manufacturing tech-

nology may be considered not very complicated provided due attention is paid to some sensitive aspects with 

impact on vibration susceptibility and lifetime. The nice operational feature is the possibility to flatten the effi-

ciency curve by dividing the guide vane and runner flow system into several segments (typically 2 - 4) run as 

separate moduli. High interest in the Banki-Michell turbines is manifested by a large number of technical and 

scientific studies reported from the non-European countries. 

 

PATs and other energy recovery turbines 

In case of smallest installations featured by rather constant operating conditions, use can be made of pumps run 

in the turbine operation mode. Efficiency at the optimum operation point is usually between 65 and 75 %, occa-

sionally exceeding 80 % (Fontanella et al., 2020). This is by 10 to 20 % less than in case of classic turbines (such 

as Francis and Kaplan). Furthermore, due to steep efficiency characteristics, proper matching the best efficiency 

point to the operating conditions is of key significance. However, due to serial manufacture and relatively low 

price, Pumps As Turbines (PATs) appear often an economically justified choice both for energy recovery installa-

tions in municipal water networks or industrial hydraulic systems and for some classic micro hydropower appli-

cations. Regulation is generally possible by rotation speed adjustment or head lowering techniques. 

Usually single stage centrifugal pumps are deployed in the operating range between 10 m up to almost 200 m. 

Some large European pump manufacturers, like KSB, have acknowledged significance of such implementation of 

their product and tested their pumps in the turbining mode of operation (Figure 36). 
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Figure 36: Pumps for turbine operation as offered by KSB AG (KSB, 2012) 

In order to complete the technologies portfolio for small hydropower on existing infrastructures, new turbines 

are under development. At HES SO Valais, a new turbine called Duo Turbo (Figure 37) has been developed in 

collaboration with EPFL and industrial partners to harvest the energy of drinking water networks. One stage of 

the DuoTurbo microturbine consists of two axial counter-rotating runners, each one featured with a wet perma-

nent magnet rim generator with independent speed regulation. This compact design enables a serial installation 

to cover a wide range of hydraulic power. Two prototypes of a one stage Duo Turbo have been installed in 2018 

and 2019 on pilot sites with an installed power of 6 kW recovering a head between 20 m and 80 m and a discharge 

between 5 l/s and 20 l/s. The relative rotational speed of the two runners allows a good efficiency for a large 

variation of head and discharge compare to PAT technology. 

An urban version of the Duo Turbo (Figure 37) will be installed in 2021 in distribution drinking water networks of 

large cities to provide solutions for smart cities development enduring large pressure variations. 

 

Figure 37: Duo Turbo turbine developed at HES SO Valais (Biner, 2016) 

3.1.4 Hydrokinetic units 

The concept of exploiting kinetic energy of flowing waters is quite old as the documented usage of undershot 

wheels is dated for the 3rd century B.C. In fact the undershot wheels are not pure kinetic engines as they are 
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installed at small weirs and water hits the wheel paddles at some elevation over the tail water level. The specific 

kinetic energy of water flowing in the millrace is therefore much higher than that in the free flow upstream the 

weir and gravitational energy is partially used for driving the wheel. The contribution of gravitational energy is 

even higher in case of the so-called breastshot or Zuppinger wheels. The situation is different with the stream 

water wheels installed in the past at the floating mills. In this case only kinetic energy of free water stream is 

available for propulsing the wheel and milling machinery. 

Due to efficiency not surpassing 50-60 % and other disadvantages (low speed and high dimensional require-

ments) typical for all water wheels, the undershot or even breast shot wheels had to step down from the fore-

ground in the mid of the 19th century. Nevertheless, there exist today highly experienced and successful suppli-

ers of water wheel driven hydroelectric units (Figure 38). Their application field is rather narrow, oriented often 

on restoration of sites considered the industrial heritage of the past. On the other hand, the modern power 

electronic technology is helpful in avoiding excessive losses in the power transmission chain. 

 

Figure 38: A water wheel unit model by a Bavarian company of Walter Schumann at the annual RENEXPO 
Interhydro fair in Salzburg, Austria (source: J. Steller) 

The concept to exploit the kinetic energy of flowing waters came again to broader interest in the second half of 

the previous century. Firstly, the advanced compact units with small propeller turbines were found a reasonable 

source of electricity for some remote sites with no access to the grid, very low demand and situated in vicinity of 

water courses with at least locally swift water flow. The second reason was the politically motivated support from 

European governments and NGOs. Another aspect was the development of kinetic turbines for ocean related to 

a large potential of offshore electricity productions on the costs of Europe. Similar technologies can be used for 

river applications. 

Although having a lower efficiency than the hydraulic turbines there might still be a financial advantage for hy-

drokinetic turbines. The LCOE (Levelized Cost of Energy) is determined by dividing the overall cost volume of a 

power plant occurring in its lifetime (investment and operational cost) through the overall energy generated. It 

is an important investment criterion and might be in favor of kinetic turbines as they could require lower invest-

ment costs regarding civil works etc. 

The “efficiency” of kinetic turbine is calculated as a power coefficient defined as: 

𝐶𝑝 =
𝑇 ∙ 𝜔

0.5𝜌𝜋𝑅2𝑉∞
3 
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This power coefficient is function of the tip speed ratio defined as: 

𝜆 =
𝜔 ∙ 𝑅

𝑉∞
 

For a runner in a free flow, this power coefficient is limited by the well-known Betz limit of 59.2 %. According to 

the type of kinetic turbine, the power coefficient is maximum for a specific range of the tip speed ratio. 

According to the range of tip speed ratio targeted and power coefficient, different technologies can be selected 

(see above Figure 12). One characteristic is the axis orientation: cross-flow turbines or horizontal axis turbines, 

another one is the use of a venturi duct to exceed the Betz limit or let the runner in the free flow (Figure 39 and 

Figure 40). 

 

Figure 39: Non-ducted turbines with horizontal and flow adapting axis (Khan, 2009) 

 

 

Figure 40: Vertical axis kinetic turbine (Khan, 2009) 
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In case of no access to large and deep rivers with swift water current, the use of hydrokinetic propeller turbines 

in inland waters is generally limited to covering the most essential and highly localised electricity demand. The 

key advantages of this kind of installation include good mobility and robustness due to frequent use of floating 

units with ducted propellers. Among other successful European designs one should mention those of KSB, Smar-

thydro and REhydro companies (Keuneke (ed.), 2014). 

A design recommended often for recovery of hydrokinetic energy from artificial and natural canals consists in 

employing units with axis perpendicular to the inflow direction. In this context it is worthwhile to mention an 

attempt to use for this purpose the Banki-Michell runner undertaken a decade ago by a Norway based Deep 

River company. Due to a rather small power coefficient no further progress in this direction has been reported 

later on. 

The design of most hydrokinetic cross-flow turbines is based on concepts of Finnish and French engineers, Sigurd 

Savonius and Georges Darrieus, who patented their inventions as early as 1925 and 1931, respectively. In both 

cases the wind power applications were endeavoured by the inventors. Due to their relatively high power coef-

ficient (see Figure 12), only Darrieus turbines and their descendants are discussed in the text below. In distinction 

to the Banki-Michell runner, only few blades are used in case of cross-flow turbines based on the concept of 

G.Darrieus. Of course, there is an exchange of angular momentum between the rotating assembly and the liquid. 

The torque at the shaft results from positive balance of moments from individual blades. The blade with its lead-

ing edge directed towards the onflowing liquid exerts the highest moment. At the same time negative angular 

momentum is transmitted to the liquid. A lot of research and development work on optimising blade geometry 

and configuration has resulted in a number of descendant designs such as H-Darrieus, Achard, Gorlov and Lucid 

turbines (Figure 40). Although the last two ones are of non-European origin they are at the same time important 

enough to be mentioned in this survey for the sake of completeness. The classic and H-type Darrieus as well as 

Achard turbines are used mostly in vertical configuration which is a substantial advantage allowing to keep the 

generator above the free water surface. Another advantage of a vertical configuration is the opportunity of an 

easy installation in an open flume which can increase their power coefficient, generally considerably smaller than 

that of the propeller ones. 

Regarding the power which can be harvested to the river current, whatever the technology, the water velocity 

upstream to the turbine, V, is of key significance, since the raw power flux grows proportionally with V
3 (see 

definition of Cp). 

Table 3 shows the undisturbed flow velocity influence on raw power flux density and the capacity of an exemplary 

hydrokinetic propeller turbine of D = 500 mm swept area diameter and high power coefficient of 46 %. As it can 

be seen, some most basic needs - essential lightening, charging of batteries etc. at a single household can be met 

only in case of local velocity close to 3 m/s which is rather an extreme value - available only locally, possibly 

creating installation and maintenance problems. Attaining the same result with still high velocity of 2 m/s re-

quires already swept area of almost 1 m diameter which is possible only in case of swift and relatively large rivers. 

Well anchored floating installations are generally used for this purpose (Saini and Saini, 2019, Keuneke (ed.), 

2014, and Khan et al. 2009). 
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Table 3: The equivalent head, power flux density and maximum ouput to be expected from highly efficient 
non-ducted hydrokinetic propeller turbines of various tip diameters 

V H  PD500 PD1000 PD2500 PD20000 

m/s cm kW/m2 kW kW kW kW 

1.0 5.1 0.5 0.05 0.18 1.13 72.3 

1.5 11.5 1.7 0.15 0.61 3.81 243.9 

2.0 20.4 4.0 0.36 1.45 9.03 578.1 

3.0 45.9 13.5 1.22 4.88 30.48 1950.9 

4.0 81.5 32.0 2.89 11.56 72.26  

 

The axial velocity at runner cross-section can be substantially increased by installing the propeller at a diffuser 

inlet or in a venturi type duct. As reported in Khan et al. (2009), reaching a power coefficient as high as 1.69 

should be possible. Of course, this increases also the installation size. Optimising the duct geometry has been a 

subject of numerous research and development studies within the recent years. The other method – feasible 

only in some artificial canals – is narrowing the canal width or lifting the canal bed at the installation site. This 

may contradict the canal design assumptions by affecting the canal discharge capacity and perhaps some other 

functional features. 

One of the most successful hydrokinetic projects is that of Strom-Boje (Current Buoy). The unit is equipped with 

a two bladed propeller runner and a permanent magnet synchronous generator. The inlet segment is a large fin 

taking care of unit orientation along the main flow direction. Steel cables stretched on both sides of the inlet fin 

act as a self cleaning trashrack. Diffuser at the outlet side decreases pressure downstream the runner and in-

creases flow velocity through the unit (Figure 41). 

Strom-Boje was designed after the patented concept of an Austrian engineer, Fritz Mondl, and is manufactured 

now by the Aqua Libre GmbH and Aqua Libre Energieentwicklungs GmbH companies. Consecutive prototypes 

have been developed under support from various research and development projects since 2006. Since 2017 a 

commercial unit of 70 kW rated capacity is in successful operation in Danube close to the Kienstock locality. With 

runner of 2.5 m diameter, diffuser of outlet diameter 5.3 m, and weight of 7 tonnes, the unit generates 250 MWh 

per year which implies the average capacity of 30 kW at average flow velocity 2 m/s. The capacity achieved shows 

that velocity at the runner cross-section has been increased by nearly 50 %. The example shows also that an 

axial-flow hydrokinetic unit can be a source of a reasonable amount of electricity when installed in a large swift 

river with no prospects for damming. However, it should be borne in mind that only a small portion of kinetic 

energy available at the cross-section (typically 2 to 4 %) is recovered. A large hydropower plant - when erected 

at the same site at Danube river - would probably show capacity by four orders of magnitude higher. Achieving 

capacity compatible with a typical mini hydropower plant (several hundred kW) requires erecting a whole farm 

of large hydrokinetic units under favourable flow conditions. In fact, this is planned in Rhine river, in the so-called 

Middle Rhine, between the cities of Bingen and Bonn (Strom-Boje, 2020). 
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Figure 41: Strom Boje 3 unit (source: Aqua Libre Energieentwicklungs GmbH) 

In Switzerland, a prototype of a ducted kinetic turbine has been installed in the tailrace channel of a large run-

of-river power plants on the Rhone river to investigate the influence of local blockage ratio, the turbine depth 

and the tilt of the turbine axis (Figure 42). A power coefficient of 93 % has been reached for specific conditions. 

Long term on-site measurements are planned to investigate the robustness of the turbine and the environmental 

impact. Different sites for a farm of kinetic turbines are under consideration. 

 

 

Figure 42: Tailrace channel of Lavey HPP with the open-air platform to test the kinetic turbine protype  
(Munch et al., Water 2018) 

In France, one of the more mature kinetic turbine is the Hydroquest technology (Figure 43) which has been 

installed on several pilot sites in Orleans and in Lyon.  
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Figure 43: Hydroquest technology tested in France (HydroQuest, 2020) 

The largest kinetic turbines farm in Europe was to be commissioned in 2019 on the Rhone River in France with 

this technology, close to the Genissiat Hydropower Plant with 2 MW of installed power, but the pilot project had 

to be abandoned for economical and technical reasons (Energies de la Mer, 2019). 

3.1.5 Gravitational hydropower units 

The historically documented appearance of gravitational hydropower units is dated for the 5th century AC, that 

is 800 years after that of undershot wheel and even some ancestors of the contemporary turgo turbines. The 

great advantage of an overshot wheel is its high efficiency, generally surpassing the threshold of 70 and some-

times even 80 %. The main disadvantages include very large size with wheel diameter compatible with the gross 

head and very low rotational speed resulting in excessive energy losses in the mechanical power transmission 

chain. The specific speed nsQ, as calculated with the formula used for turbines, is close or even smaller than that 

of the high head impulse turbines. Any attempt to increase the discharge results generally in excessive splashing 

of water out of the buckets and increased energy losses. Due to these reasons, the overshot wheel had to loose 

the competition with hydraulic turbines in the 19th century and step down from the scene in the first half of the 

20th century - even if some 50 years later the low speed of a hydraulic unit could have been considered an 

advantage due to ecological reasons. 

The response to a demand for a low speed and low head unit capable to generate electricity in an amount typical 

for other small hydro technologies while keeping the installation size in reasonable limits came in the end of the 

previous century. In 1992 a German engineer, Dr Karl August Radlik, patented the concept of applying the Archi-

medes screw, used so far in pumping applications, in a reverse direction - as a gravitational hydraulic engine 

(Figure 44). Some time later he supported Professor Karel Brada, of the Technical University of Prague, in his 

research on optimising the Archimedes screw parameters. The concept was not a new one as it was originally 

put forward in the beginning of 19th century by the famous French engineer C.L. Navier and 100 years later got 

even registered by W.Moerscher in the US Patent Office. However, it was mainly due to efforts of Dr K.A. Radlik 

and Prof. K. Brada that the first pilot hydropower installation could have started its operation in Aufhausen, Ba-

varia in 1997. The first commercial installations followed in 2001 (Lashofer et al., 2013). 

Archimedes screw, known in Germany as hydropower worm (Wasserkraftschnecke), is a typical gravitational en-

gine. The shaft driving torque is due to the weight of water moving downwards in the buckets formed by the 

screw blading. Despite this rather simple principle of operation the device has been a subject of numerous re-

search studies aimed at optimising such parameters as number of screw surfaces (blades), pitch, shaft/tip diam-

eter ratio, shaft axis inclination angle. Further progress followed from technological experience, especially with 

high capacity units subjected to substantial static loads. Practical experience with variable hydraulic conditions 

has lead also to such innovations as variable inclination angle. 
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Figure 44: Schematic view of an Archimedes screw runner showing instantaneous positioning of water in 
"buckets" formed by the screw blading (Rohmer et al., 2016) 

Today, the Archimedes screw may be surely considered as one of the most successful small hydro innovations 

introduced within the recent two decades. Archimedes screw based hydraulic units are manufactured worldwide 

by quite small, but also renowned companies. In numerous cases they are considered a low cost and environ-

mentally acceptable alternative for a classic axial flow turbine. 

From the technical point of view the high advantage is relatively high and flat efficiency characteristics, generally 

keeping in the 80 ÷ 90 % range for discharges above 25 % rated value. As shown by Lashofer et al (2013), typical 

efficiency of the whole hydroelectric unit is between 70 and 80 %. The disadvantages of rather limited regulation 

capabilities and high gear ratio could have been substantially mitigated by the use of frequency converters which 

allow also for rotation speed control.  

The great environmental advantage - generally acknowledged by the environmental authorities - is fish friendli-

ness. Archimedes screws are not only harmless for downstream migrating fish, but they can be also used as an 

active fish ladder or fish lift when run in pumping mode. Basically, there are two approaches used in practice. 

The first one is to use two units running in parallel: one as an electricity generator driven by an Archimedes screw 

in the hydraulic engine mode, the other one as a worm pump driven by a portion of electricity generated in the 

first unit (Figure 45, left).  

The approach developed by the company Hydroconnect is more sophisticated. The pumping screw is mounted 

inside the tubular shaft of the first one. Thus, two units get integrated. The pumping screw is driven by water 

moving downwards through the external gravitational engine screw (Figure 45, right). In each case water flowing 

out from the hydraulic engine encourages fish to by the entrance to the lift. Despite high compactness, the design 

shows also some disadvantages which include problems with attracting fish to highly turbulent tailwater and 

rather imperfect technology of mechanical power transfer via two belt gears. The disadvantage of substantial 

landscape effect can be considered valid only in case comparison is made with the best landscape integrated 

classic SHPs. 



64 SHP technologies - European state-of-the-art innovations 

 

Figure 45: A parallel Archimedes screw set by Rehart Power (left) and a 3D view of Hydroconnect coaxial 
screw unit (right) at the RENEXPO Interhydro Fair in 2017 (source: J. Steller) 

The last hydraulic unit to be mentioned in this subsection is Steffturbine. Despite its trademark, Steffturbine is 

not a hydraulic turbine at all, but a typical gravitational engine, successfully developed by the Walter Reist Hold-

ing AG, specialists in the belt conveyor technology. The driving force is weight of water flowing into consecutive 

buckets formed by non-corrosive paddles distributed on the belt (Figure 46). So the principle of operation is 

exactly the same as that in a backshot water wheel. Performance tests conducted in the Munich University of 

the German Armed Forces have shown surprisingly high efficiency between 85 and 90 % under favourable oper-

ating conditions (Baselt, Malcherek and Maerker, 2013). 

 

Figure 46: SteffturbineTM hydropower engine (Baselt, Malcherek and Maerker, 2013) 
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 Gearboxes 

In case direct coupling of the turbine and generator shafts is not possible – e.g. due to too low turbine speed - it 

is generally needed to use a speed increaser. Basically there are two kinds of speed increasers used hydropower: 

a) tooth gears and b) belt drives. 

3.2.1 Tooth gears 

Tooth gears can be applied in full range of small hydro units. They can be mounted both inside and outside the 

turbine. The first solution is typical for bulb or vertical submersible turbines. In some cases the turbine bulb 

(capsule) comprises also the generator. In some other ones – only a bevel gear connected to the shaft of an 

external generator (Figure 47). An external gearbox is typical for vertical units and pit tubular turbines (Figure 

48). 

 

Figure 47: Tubular pit turbine with a bevel speed  
increaser (Voith, 1990s) 

 

Figure 48: Vertical Kaplan unit with a parallel shaft 
speed increaser (Eisenbeiss, 2016) 

The tooth gear can be connected directly or indirectly to the turbine shaft. In order to avoid any failure risk due 

to any misalignment and/or vibration, couplings are often applied. At least one of the couplings connecting the 

gearbox with turbine and generator shafts should be flexible. 

In case of lower capacities the straight cut gears used. For higher ones – helical, double helical (Herringbone) and 

curved tooth gears (e.g. spiral bevel or hypoid gears) can be applied. The gear type and size are selected accord-

ing to the turbine type and configuration (horizontal, vertical or inclined shaft) as well as generator situation. 

The basic types of speed increasers to be used in hydropower units are as follows: 

• spur gears (straight cut gears with cylindrical wheels, Figure 49); 

• bevel gears (with conical wheels, Figure 50); 

• planetary (epicyclic) gears (Figure 51). 

Ensuring the expected lifetime and noiseless operation requires high manufacturing quality. Appropriate steels 

are to be used. The tooth surfaces should be hardened and grinded. High quality of alignment and bearings used 

as well as proper selection of lubricants are essential. The tooth gears as used in hydraulic units are generally 

designed as speed increasers and produced by experienced manufacturers. In some cases speed reducers are 
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also deployed. When selecting a speed reducer to be used as speed increaser the power capacity surplus is to be 

necessarily consulted with the supplier. In case of a typical spur speed reducers, the power capacity surplus ratio 

is f =1.5. 

The main advantages of a tooth gears include compact structure and high efficiency (generally close to 98 %, 

depending on type number of stages and gear ratio). Among disadvantages one counts high manufacturing costs 

and possible noise emission. 

 

Figure 49: Spur gears dedicated for (left) vertical Kaplan and (right) pit tubular turbines (Eisenbeiss, 2016) 

 

 

Figure 50: Bevel gears driving a horizontal (left) and vertical (right) generator (Eisenbeiss, 2016) 

 

 

Figure 51: A double sun planet gear as offered by Rohloff AG (2020) 

The progress in both material science and CAM technology having taken place in recent decades has shown a 

profound impact on the quality of gear manufacture. The capability to take over very large forces and transfer 
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considerable torques without increased risk of gear failure or shortening the average lifetime clearly favoured 

the development of compact tubular units with bevel gears. On the other hand, improving quality of planetary 

gears together with variable speed technology based on permanent magnet generators and current converters 

enabled a further decrease of the tubular turbine capsule size - at some stage, surely contributing to spread of 

the submersible units. 

3.2.2 Belt Drives 

Belt drives are generally used in in hydraulic units with a capacity of up to 500 kW. The transmission belts can be 

divided according to their cross-sectional profiles as flat and V profiled (Figure 52). Additionally belts can be 

cogged. Cogged belts are also called toothed, timing and synchronous belts. 

 

Figure 52: Application range of 3 types of transmission belts as offered by Hutchinson (2020) 

Classic belt drives (Figure 53) transmit the torque from the turbine shaft onto that of the generator by friction 

between the pulleys and the belt in contact with them. The flat belt pulleys show slightly convex profile prevent-

ing the belt sliding down from the pulley. The V-belt pulleys are grooved. 

Attaining the required friction force in flat belt drives requires substantial tension in the belt. Therefore it is 

recommended to avoid setting the turbine pulley directly on the turbine shaft. Using a separate shaft, connected 

to the pulley by means of a flexible coupling shows an advantageous effect on the turbine bearing system. The 

required contact angle between pulleys and the flat belt increases the distance between pulleys and results in 

much higher drive size than in case of a V-belt drive. 
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Figure 53: Flat belt drives in micro hydropower installations (Burger Wasserkraftanlagen, 2020) 

V-belt drives transmit the torque with apparently increased friction coefficient which results in lowering the 

speed increaser size. Lower tension is required than in case of flat belts. Linked belts are generally recommended 

in V-belt drives. This solution ensures uniform load of all belts in a package and raises the drive lifetime. 

The belt drive advantages include low noise operation and high efficiency. The flat belt drives show efficiency of 

about 99 % whereas the efficiency of V-belt drives is about 98 % and more. Their advantage in comparison with 

tooth gears lies also in much lower manufacturing costs. The general disadvantage is much higher size in com-

parison with the tooth gears and the need to adjust the distance between the pulleys. 

In the past, flat belt drives were used quite extensively in small hydropower plants, also for torque transmission 

onto mechanical speed governors. Due to their low price they are still considered a reasonable option in some 

micro installations erected in place of old mills and equipped with vertical Francis turbines. V-belt drives are more 

frequently used in horizontal units. 

In the recent decades the cogged belts are ever more often in use. Power transmission using the cogged belts is 

a very compact design option. As the torque is not transmitted by friction, the belts require minimum tension in 

order to avoid the belt teeth to skip those at the pulley rim. This feature increases substantially the lifetime of 

turbine bearings and allows to situate the driving pulley directly on the turbine shaft. At the same time one should 

notice that the cogged belt drives are more noisy than those with flat and V profiled belts.  

Figure 54 shows an interesting example of combining the flat belt drive with a tooth gear based speed increaser 

in order to transmit the bulb turbine mechanical torque from the turbine runner rim onto the generator shaft. 

In the end of previous century this straflo configuration was considered an alternative for the small bevel gear 

units. Simplified versions, with turbine pulley situated in the bulb, were also manufactured. 
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Figure 54: A mini straflo unit with combined power transmission from the runner rim by means of a flat belt 
and a spur speed increaser (ESHA, 2004) 

Nowadays, gear boxes generally prevail in case of modern medium size small hydro units with turbine rotational 

speed below that of an 8-pole generator (375 rpm). The major part of progress linked with mechanical power 

transmission systems is linked with manufacturing technology allowing to produce gears and belts of ever higher 

durability. At the same time, permanent magnet generators with electrical power conversion systems success-

fully take over the function of mechanical gears in European micro and mini hydropower plants. More sophisti-

cated, but still highly expensive, asynchronous generator based variable speed systems are also known from large 

hydro. 

 Generators 

The mechanical energy of hydraulic unit rotating assembly is converted to electricity by means of generators. In 

practice, three kinds of AC three phase generators are encountered: synchronous, asynchronous and permanent 

magnet synchronous ones. The differences are essential as they concern both construction and principle of op-

eration. 

3.3.1 Basic parameters 

The most essential generator features are described by the following rated parameters: voltage U, power S, 

power factor cos φ, frequency f, rotational speed n, excitation voltage Uexc and current Iexc (in case of synchronous 

generators). 

The synchronous rotation speed [rpm] depends on grid frequency and the number of poles p according to the 

following relationship: 

𝑛 =
60 ∙ 𝑓

𝑝
 

The rated voltage and current, as expressed in volts [V] and amperes [A], are defined in their effective values. 

Furthermore, the rated voltage term refers to the interphase voltage. The relationship between the interphase 

(line/line) and phase (line/neutral) voltage, UL-L and UL-N, respectively, is described by the dependence: 

𝑈𝐿−𝐿 = √3 ∙ 𝑈𝐿−𝑁 

The generator power is expressed by means of the apparent power S expressed in volt-amperes [VA] and equal 

the sum of powers in all phases: 
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𝑆 = 3 ∙ 𝑈𝐿−𝑁 ∙ 𝐼 = √3 ∙ 𝑈𝐿−𝐿 ∙ 𝐼 

The apparent power is a geometric sum of the active (useable) and reactive powers, P and Q, respectively: 

𝑆 = √𝑃2 + 𝑄2 

The active power generated by the generator and expressed in watts [W] is defined by the formula 

𝑃 = 𝑆 ∙ cos (𝜑) 

with φ denoting the phase shift between current and voltage.  

The reactive power, expressed in VAr, follows from the formula 

𝑄 = 𝑆 ∙ sin (𝜑) 

The reactive power can be of inductive (with voltage preceding the current) or capacitive (with current preceding 

voltage) character. 

A significant parameter is also efficiency  defining the fraction of mechanical energy delivered to the generator 

shaft which can be converted into electrical energy, useful for the consumer. 

3.3.2 Synchronous generators 

Synchronous generators are usually applied in hydraulic units with capacity not lower than several hundred kW. 

The synchronous machine stator represents a three-phase AC winding whereas the DC winding (excitation) is 

comprised in the rotor. The excitation winding can be fed from a generator representing a part of the hydraulic 

unit (rotating excitation) or from a rectifier fed with an external source of electricity (static excitation). When in 

operation, the rotor and the stator magnetic field keep constant relative positioning (synchronous rotation) 

which is equivalent to keeping constant speed when running in parallel to a stiff grid. In case of a synchronous 

unit operated within an electrical power system, switching the generator to the grid is called synchronisation. 

The following conditions are required to be fulfilled: 

• consistent phase ordering in the generator and the grid; 

• consistent generator and grid frequency; 

• consistent effective voltage at the generator and in the grid; 

• consistent voltage phase shifts. 

Synchronous generators fulfil an essential role in the electrical network by enabling capability of the standalone 

operation (isle grid operation) and power system reconstruction (black start) as well as voltage and reactive 

power regulation. The disadvantages include higher deployment costs of synchronous units and the auxiliary 

systems. 

3.3.3 Asynchronous generators 

Asynchronous generators (Figure 55) are generally used in power plants of relatively small capacity (up to 1 MW). 

Typical induction engines are usually deployed for this purpose. The stator of this type machine takes the form 

of a three phase AC winding whereas the rotor represents a compact cage. When in operation, the rotor changes 

its positioning with respect to the stator (the rotor and stator magnetic fluxes move asynchronously one to the 

other). The asynchronous machine will run as a generator if its rotor speed is higher than the synchronous one. 

Basically, the asynchronous generators will generate electricity when working in parallel to the electrical grid 

supplying the reactive power necessary for magnetisation (magnetising current). The standalone operation of an 

asynchronous generator is possible, but requires applying additional systems allowing for exciting of the machine 

and stabilising the voltage and frequency. 
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Figure 55: Asynchronous generator (Little, 2016) 

Among the asynchronous generator advantages one should count its simple design and low cost. The disad-

vantages include incapability of standalone operation (isle operation requires employing of specialised auxiliary 

systems) and the need of reactive power compensation. Additional drawback is the necessity to use a speed 

increaser allowing for mechanical power transfer from the hydraulic turbine shaft to that of the generator. 

3.3.4 Synchronous permanent magnet generators 

The stator of permanent magnet synchronous generators is generally manufactured as a three-phase winding 

whereas the exciting winding is replaced by permanent magnets. In this kind of machines the generated voltage 

and frequency values depend on rotation speed. 

High efficiency in a wide range of rotation speeds is to be counted as a significant advantage. The disadvantages 

include relatively high cost and the need to use electronic power conversion systems allowing for parallel oper-

ation with the grid. 

 Electronic power conversion systems 

The power electronics systems are of ever higher significance in the electric power engineering. Initially, applica-

tion of power conversion systems was limited to using uncontrolled rectifiers in the feeding systems of DC devices 

or to charging accumulators representing an electricity supply reserve. The next step was employing controlled 

rectifiers in the excitation systems. Development of power electronics and electronic control systems resulted 

eventually in gradual replacement of the traditional rotating machinery based excitation systems by static ones. 

Today, the use of electronic power conversion systems to control the hydraulic unit rotation speed is an ever 

more frequent practice. Speed regulation by means power conversion systems is based on relevant control of 

the unit load. Fort this purpose use is made of the AC/AC converters with generator side voltage and frequency 

matched to the power grid parameters. At the same time the converters provide generator load control in a 

manner ensuring the optimum unit operation. The IGBT transistors are most frequently used as semiconductor 

power components in the high power converter systems (Figure 56). 

The use of power conversion systems allows on the one hand eliminating the mechanical gear and on the other 

one - enables variable speed operation of the hydraulic machine which results in better use of the hydropower 

resources (operation with optimum speed which is of particular significance for single regulation turbines). Fur-

thermore, the power conversion systems are a necessary equipment of units with permanent magnet synchro-

nous generators which voltage and frequency depend on the rotation speed. Both have to be matched to the 

power grid parameters at the grid connection point. 
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Figure 56: Schematic of a power electronics unit with a thyristor or an active IGBT rectifier and an IGBT in-
verter (Sobczyk et al., 2010) 

 Further electrical equipment and control systems 

Running a hydroelectric power plant requires appropriate electrical equipment, starting from generators through 

auxiliary equipment and transmission lines. Generators convert mechanical energy into electric one which is 

transmitted afterwards to the receivers via electric transmission lines. Transmission lines are developed as over-

head and underground ones. The so called sub-hanged lines – with a transmission cable hanged at the electrical 

poles. In order to lower the transmission losses transmission lines are erected for voltages higher than that of 

the generator. In such cases transformers enabling matching the voltage generated by the unit to that of the 

electrical grid are necessary. Furthermore, transmission of electrical energy requires auxiliary equipment and 

switchgears. The auxiliary equipment includes the devices that are necessary for power plant operation, but 

don’t take part in the process of electricity generation – e.g. oil or dewatering pump engines. The switchgears 

allow proper distribution electricity onto individual circuits and electrical system operation (connecting activi-

ties). The electric equipment includes also measurement instrumentation as well as protection and control de-

vices. 

Electricity generation requires proper control of all devices taking part in this process. Currently, the staff is sup-

ported by relevant control systems facilitating power plant operation. The widely conceived control system con-

sists of measurement instrumentation as well as protective and control devices. Interaction with the staff/user 

is also enabled. Finally, the appropriately developed control systems allow unmanned power plant operation 

and/or remote control. Integration of all above-mentioned tasks contributes to facilitating the staff work, in-

creasing the electricity supply safety and decreasing the operational costs – e.g. by introducing the predictive 

maintenance and diagnostics components preventing major failures. 

The contemporary control systems are usually featured by multilevel structure - that is the individual devices are 

furnished with dedicated control systems (e.g. turbine governor) which are incorporated into the control system 

of equipment groups (e.g. block controller) and then into the power plant supervisory control system.  

The PLC controllers are of substantial significance in the control systems. The controllers are furnished with ap-

propriately selected set of analog and digital inputs and outputs and allow data transmission between the de-

vices. Ever more frequently the control systems of individual devices are also furnished with operator panels 

allowing monitoring or changing their operating parameters.  

Visualisation and control of power plant operation are generally conducted from the level of operator station 

connected to the supervisory control system. Generally, the system allows monitoring the condition of the equip-

ment and their technical parameters as displayed in the technological schematics (Figure 57). The system tasks 

include also reporting current events, such as surpassing the alarm or trip values, recording the events and pa-

rameters, survey of archived records. Typical examples are shown in form of screen shots taken from a control 

and supervision system in one of Polish hydropower plants furnished with 2 Kaplan and 1 Francis turbine units. 
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The violet, green and yellow panels in Figure 57 denote start-up, shutdown, and emergency shutdown, respec-

tively. The isle operation start-up panel can be seen additionally in case of unit 2. Improper pressure in the spiral 

case immediately after shutdown is shown in red in Figure 58. 

The general trend is to perform most of activities in an automatic mode, after occurrence and fulfillment of some 

specific requirements. For instance, the start-up process should be preceded by attaining the state of start-up 

readiness (including no safeguard excitation). Next, the operator issues the start-up command. After this time 

point the consecutive steps of the start-up procedure are performed with each subsequent step commenced 

only after the necessary conditions are fulfilled (e.g. the required speed is reached prior the synchronization 

process starts). Any disturbance in the unit operation or the sequence course is reported to the operator (with 

the problem source indicated) and the system undertakes the activity adequate to the situation having occurred. 

The essential component of the generally conceived control system are protection devices which task is to take 

care of safe operation of the equipment, to minimise probability of a failure and minimisation of their conse-

quences. In contrary to the previous situation in the electrical power protection automation with individual pro-

tective functions ascribed to separate devices, the contemporary market is dominated by digital devices fulfilling 

a number of protective functions which allow the user configuring their parameters by means of the relevant 

software. For instance, the respective list of generator safeguards includes among others the over current, 

ground-fault, under and over frequency, over and under voltage, reverse power protection. In addition to the 

complex protection they provide also communication with the supervisory monitoring and control systems and 

deliver the measurement data. In case of hydromechanical part the protective function (e.g. against tempera-

ture, too high or too low oil level) is fulfilled by controllers of separate devices or the supervisory system. 

In order to increase the electricity generation reliability, lower the operational costs and improve the staff work 

comfort the control systems are subject to continuous development. Their stage of advancement and complexity 

is demonstrated by the number of process variables in a hydraulic unit control system, often as high as several 

hundred. Of course, the unsupported staff would be unable to monitor such a number of parameters. The com-

puterised monitoring systems facilitate the faultless power plant operation preventing the operator from actions 

not allowed in a given situation. The significance of automatic control systems for power plant safety and faultless 

power plant operation can be easily demonstrated at an example of synchronisation process which can lead to 

severe consequences if improperly conducted. The proper "manual" synchronisation has always required sub-

stantial expertise. Today, even the first synchronisation (during unit commissioning) is often conducted by means 

of an automatic synchroniser, as this technique is considered a more safe solution. The control systems allow 

automatic regulation of the hydraulic unit/power plant/electrical grid operating parameters such as water level, 

power and voltage. Contemporary control systems allow also increasing the use of hydropower potential and 

decreasing the electricity generation operational costs by introducing control algorithms taking care of the opti-

mum running of devices. 
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Figure 57: Electrical system schematic of an SHP power blocks in Southern Poland. A screenshot taken at 
standstill from the power plant supervision and control system (Courtesy of PGE EO SA) 

 

Figure 58: Unit 1 hydraulic control system schematic of an SHP of Figure 53. A screenshot taken immediately 
after shutdown from the power plant supervision and control system (Courtesy of PGE EO SA) 
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 Hydromechanical steel works 

The process of mechanical energy conversion into electricity in a classic (non-hydrokinetic) hydropower plant 

starts at the water intake and ends in the tailrace. Irrespective of the civil engineering infrastructures, a significant 

progress having taken place in the hydropower technology over recent decades covers not only hydraulic units, 

but also such mechanical devices as: 

• trashracks and trashrack cleaners; 

• intake and spillway gates; 

• penstocks; 

• hydraulic turbine inlet valves. 

Additionally, various arrangements discouraging the fish from coming in contact with trashracks and entering the 

intake are used at the headrace. Whenever possible their task is to guide the fish to the downstream migration 

facilities. 

3.6.1 Floating booms and trash racks 

The inlet to modern hydropower plants is often protected by 2 or 3 stages of mechanical arrangements:  

1. floating booms which can stop floating debris and guide large floating bodies, such as tree trunks, away 

from the power plant forebay; 

2. primary and secondary trash racks preventing debris of various size from entering the turbine 

Contemporary floating booms are ever more frequently manufactured out of plastics or composite materials 

linking low weight with high mechanical strength and lack of corrosion risk. Typically they are anchored to riv-

erbed or to a dedicated bridge. Sometimes a debris trap is included into their configuration. The market is heavily 

dominated by patented US and Canada products, such as Tuffboom by Worthington and Elastec. However, the 

technology is widely used also in Europe. Some European companies, offer also alternative products for small 

scale installations, such as inflatable booms (Bolina Booms, 2020). 

Trash racks (inlet screens) are usually fabricated out of stainless steel and occasionally also plastic bars. The typ-

ical structure consists of a series of bars of nearly rectangular cross section linked by connecting rods. Typically, 

the trash rack screen plane is deviated by less than 30 from the vertical one. The fine trash rack bar spacing 

varies from a clear width of 12 mm for small high head Pelton turbines to a maximum of 150 mm for large 

propeller turbines (ESHA, 2004). Spacing up to 100 mm or even more is encountered in case of primary trash 

racks. The fine thrash rack bar spacing is often a result of a compromise between the environmental require-

ments (see section 3.7) and the plant operator’s wish to avoid excessive hydraulic losses. The hydraulic losses of 

clean thrash racks can be estimated using the formulae available in most relevant textbooks. In numerous con-

tem-porary installations an increase in thrash rack losses as measured by difference of water levels activates the 

automatic trash rack cleaners. 

Generally, trash racks are mounted in segments allowing easy dismantling for the repair or replacement pur-

poses. Due care has to be taken to avoid vibration stimulated for instance by the von Karman vortices or pressure 

fluctuations in the turbine flow system. 

In most mini hydropower plants trash racks are equipped with trash rack cleaners which can represent various 

design and operation principles. Basically, both mobile and stationary devices are in use, depending on the num-

ber of units. The electrically driven wire rope and chain devices are still encountered in large and quite small 

plants, respectively. The wire rope devices are often furnished with grab rakes allowing to taking off debris even 

from direct neighbourhood of the rack. Hydraulically driven telescopic and articulated cleaners are more typical 

for most modern mini and small hydropower installations (Figure 59). The offer of European manufacturers is 

quite abundant and showing numerous innovative design solutions. 
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In case of some small hydro installations the drop intakes (e.g. the Tyrolean inlet) with self-cleaning horizontal or 

nearly horizontal trash racks are also in use. An interesting example is the Coanda screen consisting of a series of 

wedged section wires (Figure 60) and using the effect of water stream adhesion to the flown around solid surface. 

The advantage of such a design is easy downstream transportation of any debris or gravel and avoidance of any 

harm to fish which just slides over the curved Coanda screen surface towards the stream bed fed with residual 

flow. Due to substantial hydraulic losses both Tyrolean type and Coanda inlets are used mainly in high head 

schemes in Alpine countries. 

More information about racks is provided in subchapter 3.7.3. 

 

Figure 59: Articulated trash rack cleaner in  
Januszkowice SHP - Oder river, 
Poland (source: J. Steller) 

 

 

Figure 60: Aquashear Coanda screen (Dulas Ltd, 2020) 

3.6.2 Intake and spillway gates 

The vertical lift slide or wheeled gates made usually of cast iron, steel or timber boards are the most typical shut-

off devices at water intakes to numerous hydropower plant flow systems (ESHA, 2004). Their main tasks can be 

summarized as follows: 

1. to stop water flow in emergency situations 

2. to enable dewatering of the power plant flow system 

3. to enable controlled watering of the power plant flow system 

Sometimes the vertical lift gates are located also at the draft tube outlets. In modern small hydropower plants 

the gates are often hydraulically driven and controlled by the supervisory power plant control system. Electri-

cally driven wheeled and caterpillar vertical lift gates are encountered in some large and older small installa-

tions. The use of manually driven ones is highly limited nowadays and concerns mainly the spillways. In low head 

installations the function of an emergency shut-off device can be taken over by an inlet valve or even by the 

turbine wicket gates alone. The vertical lift gates (Figure 61) are used mainly for dewatering purposes and can 

play the function of maintenance stoplogs. However, in installation of higher capacity and/or head the watering 

always starts and is conducted for a longer time with using the by-pass conduits in the water intake structure. 

On the other hand, in medium and high head installations with long pressurized penstocks the swift closing 

(emergency) intake gates are often a measure of key significance in the chain of various power plant safe-guards. 
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However, exactly in this case it is also essential that all the closing devices – intake gate, turbine inlet valve and 

wicket gates or needle nozzle - are used in proper sequence and with prescribed speed so as to min-imise dan-

gerous consequences of load rejection and resulting hydraulic transients.  

The headrace water pressure is usually capable to improve the intake gate tightness. Nevertheless, this meas-

ure may be regarded insufficient for avoiding substantial leakage and conducting major overhaul works inside 

the installation flow system. Double closing with no possibility of incidental opening may be considered also 

essential out of safety reasons. Therefore intake locks are generally furnished with overhaul stoplog hollows 

situated in the intake sidewalls directly upstream the vertical lift gates if any. Timber beams or boards are gen-

erally used as stoplogs in small installations. 

 

Figure 61: The Rutki SHP water intake - Radunia Cascade, Poland (source IMP PAN archives) 

In addition to the vertical slide or wheeled gates, also radial and cylinder gates as well as butterfly valves are used 

at hydropower plant water intakes (Daniel and Paulus, 2019). Figure 62 shows a cylindrical gate application at 

inlet of small submersible axial flow turbines. However similar arrangement is used also at vertical water intakes 

to some large storage hydropower plants. 
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Figure 62: A small hydropower plant with two submersible Flygt and cylindrical intake gates (Flygt, 2020) 

Most hydropower dams are furnished both with gated and non-gated spillways. While the first ones can be used 

for various purposes linked with discharge and/or water level control, the principal task of the immobile spillways 

is to protect the dam and other related structures or equipment against damage due to uncontrolled water 

overflow through the dam crest. Also in case the gated spillway shows too low capacity or is no more controllable. 

Therefore the non-gated spillways are usually erected as overflow (chute) ones with waterway bed at specially 

shaped portion of the dam slope and/or a by-pass canal. The so called “Morning Glory” vertical shaft spillways 

with tunnels delivering water downstream the dam are also in use. 

Regulated spillway gates are used in various versions: In addition to the vertical lift (slide, wheeled) gates which 

can be used both in small and large installations, flap, roller, drum, roof and especially radial gates are in use 

(Daniel and Paulus, 2019). The radial gates can be hinged to pillars (pin type support) between the weir segments 

or to the wear sill (linear support). The pillar hinged radial gates are often named segment or Tainter gates after 

the name of their inventor whereas sector gates are generally hinged to the weir sill. Sector gates can be usually 

hidden in the sill bed when the gate is open. Schematic of a typical Tainter gate located over an overflow spillway 

at so called ogee weir is shown in Figure 63. 
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Figure 63: Segment (Tainter) gate (USACE, n.d.) 

Flap gates are traditionally widely used in numerous low head applications. Figure 64 shows a typical crest hinged 

version. However, some other configurations, including flaps hinged to the abutment and to a Tainter gate skin 

plate edge are also in wide use (Figure 65). 

Inflatable weirs are flexible gates in the form of a reinforced, sheet-rubber bladder inflated by air or water, an-

chored to a concrete foundation by anchor bolts embedded into the foundation. Like any other gate, the inflat-

able weir needs a mechanism by which it is opened and closed. The weir is raised when filled with water or air 

under pressure. An air compressor or a water pump is connected, via a pipe, to the rubber bladder. When the 

bladder is filled the gate is raised; when it is deflated the weir lies flat on its foundation, in a fully opened position 

(Figure 66, left). The system becomes competitive to traditional flap gates when the width of the weir is large in 

relation to the height (ESHA, 2004). 

Although originally developed and patented in the US by the companies Flexidam–Imbertson, Firestone and 

Bridgestone as early as the 1950s to the 1960s, inflatable weirs came to wider use in Europe only in the 1980s. 

At this time point an alternative version – with an inflated bladder or a set of bladders supporting a row of steel 

plate flashboards (Figure 66, right) – was patented by the US based Obermeyer Inc. company which still remains 

a leading supplier of this kind of equipment. Today the inflatable weirs are manufactured worldwide with Dyrhoff 

 

Figure 64: Weir crest hinged flap gate at Rzec-
zyca SHP - Wierzyca river, Poland  
(source: J. Steller) 

 

Figure 65: Fish belly flap hinged to a Tainter gate edge. 
Perach HPP - Inn river, Germany  
(Raabe,1985) 
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Ltd and Rubena (Trelleborg Bohemia) keeping the leading role in Europe. While typical damming height does not 

exceed 3 to 4 m, weirs with a height over 8 m are also encountered in inland navigation routes. 

The inflatable weir bladders are generally manufactured out of a multilayer composite consisting of rubber with 

polyamide and polyester material. The polyamide material is generally responsible for necessary tensile strength 

whereas the external rubber increases resilience to UV radiation as well as resistance to slurry erosion and pos-

sible freezing of floe plates in winter season (Figure 67). 

 

Figure 66: Inflated weir principle of operation (Daniel & Paulus, 2019) 

 

Figure 67: Inflatable weir in winter and summer seasons, Kliczkow SHP - Kwisa river, Poland (Polniak, 2015) 

As already mentioned, avoiding consequences of uncontrolled water overflow through the dam crest requires 

rapid increase of spilling discharge in response to the flood water surge even if the regulated gates are already 

completely open or no more controllable. For this purpose overflow spillways are often furnished with special 

arrangements allowing for much higher spilling discharge than that of a typical immobile weir. Generally, the 

goal is achieved by elongating the spillway crest or by lowering its elevation. The first measure is effected by 

shaping the crest in a labyrinth form. Lowering crest elevation is achieved by using bear trap gates, siphon ar-

rangements, fuse gates and spring weirs. Their great advantage is high spilling discharge immediately after the 

critical water level has been surpassed (ESHA, 2004). Furthermore, in case of some techniques a hysteresis phe-

nomenon occurs, as spilling ends only after water has fallen well below the level at which it has started.  

Figure 68 shows the schematic of a traditional fuse gate as designed by a French company Hydroplus. There is 

no spilling until the maximum allowable damming level is reached. Once it happens, the fusegate box swings 

away from the original position and intense spilling starts. A number of other designs based on similar princi-ple 

are commercially available now as well. 
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Figure 68: Hydroplus classic fuse gate. Principle of operation (Hydroplus, 2020) 

An even more simple and highly elegant design is represented by the so called spring weir as offered by Wie-

gand. The main component of the arrangement is an elastic plate mounted at the existing weir crest and de-

flecting under the weight of dammed water (Figure 69). The key issue is material quality which should show at 

the same time high elasticity, very high yield strength and high resilience to harsh environmental conditions. 

According to Wiegand, increasing the allowable damming level by even 70 cm above that of the original weir is 

possible. However, only low and very low head applications are known so far. 

 

Figure 69: A spring weir principle of operation and existing installation at Hausach - Kinzig, Germany  
(Wiegand, 2020) 

3.6.3 Penstocks 

Penstocks are pressurized conduits delivering water to the turbine. The penstock material and technology may 

be quite diverse, depending on the head, discharge and locally available resources. Generally, fabricated on-site 

welded steel tubing is used for the larger discharges and diameters. Proper selection of material and welding 

procedure as well as experienced welders are needed in order to minimise the welded joint imperfections leading 

to increased local stress and strain, occurring especially during hydraulic transients accompanying hydraulic 

unit(s) start-ups, shut-downs and load rejections. While some minor inflections may extinct in time due to plastic 

deformation, due attention must attributed to all such sites. Due to lower price and high welding process repeat-

ability spiral machine-welded steel pipes can be considered a reasonable option if they are available in the re-

quired sizes. The contemporary welding procedure includes generally a thorough diagnostic test of the weld 

quality. In case of large and some older penstocks assessments of residual lifetime, based also on the wall thick-

ness and stress measurements, are repeated in the course of exploitation. Fatigue aspects linked with the num-

ber of transient phenomena are always included in the analysis. 
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When assessing the welded penstock system quality, particular attention has to be paid to possible bifurcations 

and other branching structural nodes which may require additional stress relief arrangements. The finite element 

method (FEM) based solid structure analysis software is used nowadays together with that of hydraulic transients 

analysis to assess the expected stress and to select the most appropriate stress relief measures (Figure 70). In 

case of straight penstock segments these can include also pre-stress introduction by means of penstock band-

ages. The mentioned computational tools are in direct and indirect use by practically all relevant design offices 

in Europe.  

 

Figure 70: Tensile effort (MN/m2) distribution at penstock branching node (Adamkowski et al, 2019) 

For smaller diameters one can choose between manufactured steel or ductile iron pipes, ever more competitive 

plastic tubes and the spun or reinforced cement concrete (RCC) ones. In some developing countries pressure 

creosoted wood-stave, steel-banded pipes are considered an alternative.  

In case of steel and ductile iron pipes the H/Q1/3 ratio is used sometimes as a material selection parameter (Figure 

71). The manufactured steel pipe are supplied with spigot and socket joints and rubber "O" gaskets, which elim-

inates field welding, or with welded-on flanges, bolted on site. The most typical penstock joints are shown in 

Figure 72. The gland, flange or push-in socket joints introduce a sort of dilatation necessary to sur-vive safely 

variable mechanical and thermal loads. Flange joints are generally used whenever a device requiring possible 

dismantling – e.g. turbine inlet valve - is to be connected whereas expansion joints are in use at con-nections 

with stiff installation members, such as anchor blocks and turbine distributor. 

Recent decades have seen also further rise of a competitive offer of penstocks and penstock linings made of such 

materials as glass reinforced plastics (GRP), glass and carbon fiber reinforced plastics (GFRP and CFRP, respec-

tively ) and high density polyethylene (HDPE). Replacing some previously offered plastics, such as PVC (polyvinyl 

chloride) or PE (polyethylene), is linked with higher functional properties shown by the newly introduced mate-

rials. The most important advantages include low hydraulic losses, low maintenance costs due to no corrosion 

risk and low pressure wave celerity leading to lower water hammer pressure surges. The suppliers claim also high 

mechanical strength parameters and resistance to abrasive erosion as well as other environmental impacts, such 

as UV radiation. The maximum available diameter is 4,000 mm width. 

There key worldwide supplier of the GRP penstocks is the Amiblu holding with headquarters in Klagenfurt, Aus-

tria, and production facilities in Germany, Spain, Poland and Romania. Amiblu combines Amiantit Europe and its 

Flowtite Technology, and Hobas Europe, part of WIG Wietersdorfer Holding. The Flowtite pipes are built as a 

structural sandwich, using a continuous filament winding technology. The high-strength continuous glassfibers 

resist the hoop stresses from internal pressure, while the chopped fibers provide excellent resistance to axial 

stresses, impact, and handling loads. The structural laminate consists of heavily reinforced skins, separated by a 

compact, reinforced silica-filled core to provide optimal bending stiffness (Fehler! Verweisquelle konnte nicht 
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gefunden werden.). An alternative, centrifugal casting technology is used by Hobas. The manufacturing ma-

chine’s arm feeds all raw materials – chopped glass fibers, thermosetting plastics (unsaturated polyester or vi-

nylester resins), and rein-forcing agents – into a fast-rotating mold. Layer by layer, in a predefined process, the 

pipe wall is built up from the outside inward (Amiblu, 2020). 

 

Figure 71: Typical steel and ductile iron penstock small hydro application ranges (Steller, 2020 after anon) 

 

 

Figure 72: Typical steel and ductile iron penstock joints: a) welded joints; b) gland joints; c) flange joints;  
d) spigot joints; e) threaded spigot joints (Giesecke & Mosonyi, 1998) 

The GRP penstocks are ever more widely used both in new installations and the rehabilitated ones. Sometimes 

as a replacement following the previous penstock failure (Figure 73). Among most significant GRP hydropower 

penstocks one may count those in Schwarzach HPP (head 264 m, penstock length 4.3 km, planned uprating to 

16.9 MW, Austria) and Feldsee Pumped Storage Power Plant (head 524 m, 70 MW, Austria). In the last case the 

Flowtite piping is used as lining in rock tunnel. 
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Figure 73: Flowtite pipe structure (left) and replacement of a wood stave penstock segment by a Hobas GRP 
pipeline (right). Jackman Hydro Station, Hills-borough, New Hampshire, USA (Amiblu, 2020) 

With exception of largest diameters and in case of sufficiently stable geotechnical conditions, buried penstocks 

are often recommended, provided there is only a minimum of rock excavation required. Expansion joints and 

concrete anchors can be thus eliminated as the sand gravel backfill provides natural insulation. Maintenance 

painting and anticorrosive wrapping is not required, although protective measures are of essential significance 

at the installation stage (Gordon & Murray, 1985). In case the surface penstock option has been selected, proper 

design and reliable foundation of penstock anchor blocks and supports are of crucial significance for penstock 

safety. Their fundamental role in dissipating the pressure fluctuation energy during hydraulic transients is hard 

to be overestimated. In fact, irrespective of such factors as support failure or shift due to landslides or earth-

quakes, the basic threat to penstock safety comes from repeated water hammer phenomenon accompanying 

start-ups and shutdowns, and especially emergency shutdowns and load rejections. The inertial pressure rise or 

fall resulting out liquid column deceleration or acceleration can be evaluated from the second principle of dy-

namics as 

∆𝑝 = −
𝜌

𝐴

𝑑𝑄

𝑑𝑡
 

with , A and Q standing for liquid density, penstock cross-sectional area and discharge. In fact the equation is 

the basis for deriving the pressure-time discharge measurement (Gibson) method. The purely inertial model as-

sumes liquid incompressibility (infinite sound speed) and leads to infinite pressure rise in case of a sudden liquid 

column stoppage. Arriving at a physically justified value requires including water compressibility into considera-

tions which was done already in the end of the 19th century.  

According to the N. Joukovsky formula, the maximum pressure rise due to a sudden liquid column stoppage is 

pmax = -cQ/A 

with c standing for sound celerity. The formula is considered valid in case the closing process duration is shorter 

than the pressure wave reflection time. Otherwise inertial and pressure wave interference effects have to be 

accounted for. These and other hydraulic transient aspects – including water column separation – are duly in-

cluded in most modern software packages used nowadays by relevant design and consulting offices as well as 
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collaboration research and development institutes. In case of hydroelectric power plants with reactive turbines, 

including the so called 4-quadrant turbine characteristics and the wicket gate closure law as one of boundary 

conditions, is of key significance for reliable prediction of both hydraulic transients within the penstock and the 

rise of hydraulic unit rotation speed after grid connection has been switched off. Applying the optimized wicket 

gate closing law is a key operational measure used to mitigate unwanted consequences of swift shutdown pro-

cesses (so called valve stroking method).  

Steps towards mitigating the hydraulic transient effects are undertaken also by the designer of the diversion 

scheme which in addition to the penstock can include also a free surface diversion canal and/or a pressurised 

tunnel with steel or concrete lining. The main civil engineering arrangement mitigating hydraulic transients is a 

surge tower used to attenuate the increased pressure wave and to dissipate its energy.  

3.6.4 Hydraulic turbine inlet valves 

Gates and valves can be encountered at various sites of a hydropower installation flow system, including water 

intake, turbine inlet, inlet to the water relief conduits. Aeriation valves are occasionally included in a hydraulic 

turbine equipment – used during normal operation (e.g. classic cross-flow turbines), at the end of the turbine 

shutdown or just to stop a turbine in siphon configuration. 

Numerous low head turbines, especially Kaplan ones - both those with semi-spiral casing and those in tubular 

configuration – use their vertical lift inlet gates as their only cut-off devices, often excluded from the emergency 

shutdown procedures. In case water is delivered by a penstock, inlet valves are mounted at the distributor en-

trance allowing thus turbine flow system isolation from the inlet installation. 

Although wedge shaped stoppers are still in use in some installations, butterfly, rotary and globe valves (Figure 

74 and Figure 75) are generally used at inlets to turbine distributors. Hydraulic actuators are usually in use in 

modern and larger installations. In case of high heads (> 200 m) using pressurised (head) water instead of oil is 

recommended. Counterweighs are used in order to diminish the effort required for closing and to allow self-

closing in case of emergency. 

 

Figure 74: Butterfly valves as offered by the TB Hydro company (TB Hydro, 2020) 
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Figure 75: Rotary and globe valves as offered by the TB Hydro company (TB Hydro, 2020) 

 Fish Passage Measures 

Subchapter 3.7 is a contribution from the FIThydro consortium (project coordinator: Peter Rutschmann). This 

text uses original contents of the FIThydro Deliverable 2.1, authored by: Laurent David, Manon Dewitte, 

Dominique Courret, Sylvain Richard, Pierre Sagnes. Modifications of the original D2.1 contents were made by 

Peter Rutschmann. 

Preface 

This contribution originates from the FIThydro project deliverable 2.1. It is similarly structured as the original and 

the content is often overtaken without changes. The work and the ideas described in D2.1 are the product of 

contributions of many people from the 26 partners in FIThydro. In many parts the text of D2.1 is shortened and 

design guidelines are not included. Readers interested in detailed information should therefore study the original 

deliverable at https://www.fithydro.eu/deliverables-tech/ . 

3.7.1 Introduction to fish upstream and downstream migration 

Many fish migrate hundreds of kilometers between their habitat and their spawning grounds. Typical examples 

of such migrations are the salmon or eel, which have to migrate between the sea and the river. If their migration 

is hindered or made impossible, reproduction is not possible. Other fish need such migrations as well, but in a 

smaller ambit, for example the lake trout lives in the lake and reproduces in the river. For other species, migra-

tions may not necessarily be vital, but are desirable for their life cycle from juvenile to adult fish and for gene 

exchange or other reasons. 

The migration of fish in river systems is hampered by building structures. Numerous transverse structures have 

been errected by humans to stop the depth erosion of rivers, weirs have been built to divert water or hydroelec-

tric power plants block the path of migrating fish. These obstacles result in fish migration being completely pre-

vented or at least severely slowed down, fish in turbines, sluices or spillways are hurt or die, fish fall victim to 

predatory fish or fish-eating birds in their search to overcome the obstacles, or die as a result of a change in 

water quality. 

The European Water Framework Directive (WFD), demands to ensure the best approximation to the ecological 

continuum, including upstream and down-stream migration of all species, as one of the hydro-morphological 

elements which sustain the good ecological status of rivers. In addition, European Council regulation 

no. 1100/2007 established measures for the recovery of European eel stocks. It includes the requirement that 

all member states reduce anthropogenic mortality factors and notably the injuries inflicted on silver eels migrat-

ing downstream and passing through turbines. 
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For hydropower installations, new fish passage facilities and connections to adjoining waterbodies must be 

erected, and existing structures must be reviewed and may have to be adapted if they do not function properly 

according to WFD and regulation no. 1100/2007. 

While upstream migration seems to be solved by nature-like or artificial fish-ways and fish passes, downstream 

migration still poses a major challenge. Fish can drift downstream with the main current and reach the trash rack 

systems at the turbine intakes. Following the main current they are unable to find a fishway or there is no alter-

native way to bypass the turbine, so that they often end up being carried into the downstream by the turbine 

and thus often suffer fatal injuries. 

3.7.2 Solutions for upstream migration 

Three kinds of solution can be set up in order to restore, at least partially, upstream migrations at obstacles: 

• Removal or levelling of transverse structures i.e. obstacles. Removal of these structures such as sills, weirs, 

dams and hydropower plants is a definitive solution to restore a complete ecological continuity, but it is 

not compatible with hydropower production and other water uses.  

• Construction of fishways. This is the classical solution, compatible with hydropower production, as a small 

part of the potential intake discharge is used to supply the fish passage device. 

• Management operations. This kind of solutions includes the targeted opening of mobile units (rare in hy-

droelectric production contexts) or the use of navigation locks attached to power stations (to date in 

France one example on the Rhône River). 

The “Trap and Truck” method can constitute a fourth solution but is rarely used, as it needs high reactivity from 

the staff and diverse fish manipulations which may cause fish injuries. It can nevertheless be justified for by-

passing a significant number of successive arrangements and in the absence of interesting habitats between 

these arrangements for the target species. 

3.7.2.1 Removal or levelling of transverse structures i.e. obstacles 

This option is not considered here because it is not in line with hydropower energy production. Information on 

the topic can be found in the EU-H2020 project AMBER (https://amber.international/). 

3.7.2.2 Fishways 

A fishway can be either natural or completely artificial. There are several different types of fishways: Pool-type 

fishways, nature-like or rough bottom fishways and baffle fishways. The principle of these fishways is the same: 

The fish should be able to overcome the height difference in a short distance, but the energy in the fishway must 

be converted efficiently so that the speeds are not too high and the swimming power of the fish is sufficient to 

move through the fishway. To make this possible, the fishway should also have calm zones in which the fish can 

rest. This can be achieved with different fishway designs. 

While in the past the main focus was on the ascent of fish from downstream to upstream, today's fish pass should 

also meet other requirements if possible. Therefore, the function of a fishway as a habitat is becoming more and 

more important. While both an artificial and a given fishway can be used purely for migration, the nature-like 

fishway has decisive advantages as a substitute habitat for fish and other aquatic species (Figure 76 to Figure 78). 
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Figure 76: Pool type (left) and steep baffle type (Denil) fish pass (right) (source: J. Geist, P. Rutschmann) 
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Figure 77: Combination of different types of ramps, with concrete elements in the foreground and steep, 
rough ramp in the background (source: P. Rutschmann) 

 

Figure 78: Nature like fishway at Freudenau HPP, Austria (source: W. Reckendorfer) 
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3.7.2.3 Fishways for eels 

Eels can also migrate in ordinary fishways. However, it is more efficient to use specially planned migration paths. 

Eels have characteristic features that a specific design can take better account of. They have a very long body 

and very individual swimming movements, which can be accommodated with the appropriate substrate (Figure 

79). 

 

Figure 79: Eel ramp covered by a brush type substrate (left) and (right) a concrete cones substrate  
(source: AFB) 

 

3.7.2.4 Fish lifts 

Fish lifts are used where the difference between upstream and downstream is too high to be overcome with 

conventional fishways (Figure 80). They work in such a way that fish swim into a tank which acts as trap, are then 

unable to leave and are lifted into the upstream by a mechanical system. In order to motivate the fish to swim 

into the trap, there must be a sufficient current. When the fish have reached the top, they are tipped out or the 

tank is opened and the fish can swim into the headwater. Fish lifts are used where conventional systems fail. The 

fish lift principle was first used in the USA on the Connecticut River. 

 

Figure 80: Fish lift Runserau, Austria (source: M. Schletterer) 
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3.7.2.5 Fish locks 

Fish locks work very similar to ship locks (Figure 81). Fish swim into a chamber which can be closed off against 

upstream and downstream by means of gates. When the downstream gate closes, water from upstream flows 

into the lock and the water level rises. When the water levels in the lock and the upstream reservoir have equal-

ized, the upstream gate is opened again and the fish can swim out. Fish locks were first used on the Columbia 

River in the USA. However, their efficiency proved to be very modest and most locks have since been replaced 

by conventional fishways. 

 

Figure 81: Fish lock at the Jeging 2 HPP, Austria. (source: M. Schletterer) 

3.7.2.6 Specific solutions Management operations 

Besides the classical solutions shown above, there are also very special approaches to support the upstream 

migration of fish. These include the adapted operation of ship locks, the partial permeability of hydropower 

plants at important migration times, the transport of fish by trucks or similar. Recently, interesting upstream 

migration facilities have also been presented, which need to be further developed and investigated. For example, 

the innovative screw elevator system by REHART/Strasser, in which fish are lifted to a higher level by a counter-

rotating Archimedean screw (see www.rehart-power.de), or the Whooshh (“the salmon cannon”) which can 

transport fish in a hose over great lengths and heights (see www.whoosh.com). 

3.7.3 Solutions for downstream migration 

3.7.3.1 Introduction 

According to the EU-WFD fish and other aquatic species must be able to migrate in rivers in both directions. 

While there is a lot of knowledge about the migration of fish into the headwater, the possibilities of fish migration 

into the underwater are much less investigated and special solutions for fish descent exist only exceptionally at 

existing facilities. Multiple fish passage options exist for fish to pass downstream through the dams such as down-

stream migration bypasses, fishways, spillways and turbines. Usually fish follow the main flow when migrating 

downstream and therefore often are attracted by the turbine intakes and miss downstream migration options 

such as fishways. Nevertheless during floods many fishes use open spillways to migrate over barriers.  

For downstream fish migration the FIThydro project has mainly investigated by-pass options to which fishes are 

guided by racks or louvers. Functioning bypass options for smaller sized or medium sized hydropower plants 

exist. Fish are guided with narrowly spaced trash racks, either horizontally or vertically inclined, to a bypass. 

However, for power plants at large rivers the respective solutions have clear disadvantages. The trash racks used 

for guidance are long and costly, trash rack cleaning is difficult and large hydraulic losses occur especially when 

http://www.rehart-power.de/
http://www.whoosh.com/
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the racks are blocked by debris. Furthermore in the FIThydro project mortalities in turbines were investigated 

and from these investigations knowhow on how and where mortalities occur has been raised. 

3.7.3.2 Solutions to avoid/limit mortality 

Fish protection technologies at HPPs to avoid or at least limit the mortality of fish moving downstream are con-

ceptually classified into two categories namely (I) Screening/Shielding and Guidance and (II) Conveyance. Selec-

tion of one or more of the measures depends on fish species as well as flow and site conditions at the HPP. The 

following measures are further explained: 

• Fish-friendly turbine operation (targeted shutdowns of the turbine); 

• Fish-friendly turbines; 

• Sensory, behavioural barriers associated with bypass systems; 

• Material barriers, generating behavioural and/or physical blockage including skimming walls, louvers, in-

clined racks, angled bar racks (with vertical bars) and horizontal bar racks associated with bypass systems. 

• Horizontal racks and innovative HPP designs 

3.7.3.3 Fish friendly turbine operation 

Without modification of the water intake, the shutdown of conventional turbines is the only solution to avoid 

turbine passage and the corresponding fish mortality rates. This solution can in principle be effective but can 

become very costly for the hydroelectric operator if the shutdowns are not targeted. The challenge is not only 

to target, but also to anticipate the events of downstream migration. A targeted shutdown is frequently used 

during migration of eels in conjunction with a biomonitor, such as the Migromat, that indicate beginning an end 

of the eel migration period. The solution could also be used during smolt migration, however the migration pe-

riod of young salmon is long and the production losses due to the shutdown high. An approach combining envi-

ronmental parameters like discharge, temperature, turbidity etc. with fish motion data from radio telemetry 

studies can help to better predict migration periods of fish species (see Bruijs, et al., 2003). Fishfriendly turbine 

operation also includes avoiding part load operation. For Kaplan turbines, the mortality increases as the discharge 

is reduced, notably due to the reduced space between the blades (Berg, 1986 and Bruijs, et al., 2003). The effect 

of such "fish adjusted turbine operation" was simulated for eels on the Moselle River: in combination with a 

"catch and carry" measure, it produces only a gain of 2 % on survival rate (Kroll, 2015). 

3.7.3.4 Fish friendly turbines 

One solution to avoid or at least limit the mortality is to modify the turbine design to eliminate each source of 

damages on fish (strike, pinching-grinding in gaps, pressure change and cavitation, shear and turbulence). Several 

turbines were developed for low head HPPs like the Archimedes or hydrodynamic screws, the VLH (very low 

head) turbines, Pentair Fairbanks Nijhuis/FishFlow Innovations Turbine, the Alden turbine or the Minimum Gap 

Runner (MGR) as are shown in Figure 82. For further details on these developments, please refer to the corre-

sponding literature. 
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Figure 82: View of fish-friendly turbines: screw (up left), VLH (up right) (source: MJ2 technologies), Pentair  
fair-banks (down left) and Alden turbine (down right) 

As an alternative to a new fish-friendly turbine the IDA (induced drift application) fish protection system was 

investigated during the FIThydro project. The IDA device was invented and developed at Technical University of 

Munich (TUM) and TUM holds an EU patent (EP3029203) on the device. IDA intends to increase survival rates by 

targeted behaviour manipulation of fish during turbine passage. Passage location, fish orientation and swimming 

behaviour are influenced in a way to optimize survival of fishes during the risky turbine passage. IDA is a very 

simple device with which turbines can be retrofitted with little effort.  

In principle, electric fields, light or ultrasound can be used to influence fish behavior. Electric fields are particularly 

effective and fish show a direct effect on them (Figure 83). At low field strengths fish are deterred, at higher field 

strengths fish are attracted by the anode. If the field strengths are high enough and the influence is long enough, 

fish can also be anaesthetised, so-called electro-narcosis. An appropriate field strength can therefore lead fish to 

a point of entry into the turbine with a high probability of survival and the narcotised fish cannot perform dan-

gerous swimming movements during the turbine passage. First results have shown that mortality with IDA is 

reduced to about half and further improvements seem possible. 
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Figure 83: IDA pilot at the 35 kW test case Kaplan turbine intake with the two ring-shaped copper electrodes 
(left) and observed damage rates for fish passage without (blue) and with IDA pilot device (red) for 
varying fish lengths (total length TL) 

3.7.3.5 Sensory or behavioural barriers 

Sensory behavioural barriers modify the fish environment by taking advantage of their natural response to vari-

ous stimuli (sound, light, electric screen, air bubble curtains, chain screens etc.) to guide the fish to a safe route 

(bypass entrance, spillway or other types of passages). Such barriers are convenient for designers and users alike 

because, unlike physical barriers, they require only minimum maintenance and cleaning efforts against blockage. 

Promising results have been obtained with various experimental behavioural screens in laboratories or on test 

sites. However, not many prototype installations have been evaluated. Furthermore, the technology has not met 

the expectations and the results obtained in field applications have been much less reliable than those obtained 

under controlled conditions. Furthermore, their scope of application is limited to low flow velocities (<0.3 m/s). 

( (EPRI, 1986) (Kynard, et al., 1990), (EPRI, 1994), (Gosset, et al., 1999), (Therrien, et al., 1998) (Travade, et al., 

1999), (Larinier, et al., 2002), (Bau, et al., 2008) ). 
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3.7.3.6 Material barriers 

3.7.3.6.1 Skimming walls 

Skimming walls (or surface mask) can be used to deflect those species that migrate in the surface layers, such as 

salmonid smolts. This device is inefficient for bottom-oriented species, such as eels. A guide wall must cover a 

certain depth to generate a sufficient repelling effect and must be installed at an angle to the channel intake to 

guide fish to a bypass entrance located at its downstream end (Figure 84). 

 

Figure 84: Skimming wall at Bellows falls power station (Odeh, et al., 1998) 

3.7.3.6.2 Bypasses combined to conventional existing racks 

From the 1980s to the early 2000s, research was conducted, mainly in the USA, Canada and France, to assess the 

efficiency of surface bypasses combined with conventional bar racks existing at HPPs for turbine protection (not 

too expensive and cumbersome solution). Most studies focused on salmonids. The experiments have shown that 

the efficiency of these systems is heavily dependent on the repulsive effect of the bar racks on fish, the velocity 

pattern in the canal intake and the design of the bypass entrance (Larinier, et al., 2002). 

In brief, for Atlantic salmon smolts, the guidance efficiency of surface bypasses combined with existing bar racks 

varies between 10-20 % to 80-90 %. For bar spacing larger than 50 mm the efficiency is low, for bar spacing of 

30-50 mm the efficiency is medium and for bar spacing of 25 mm the efficiency is high (Larinier, et al., 2002). 

Studies conducted on eels revealed that the efficiencies of surface or bottom bypasses combined with existing 

bar racks were much lower than for smolts, as eels do not show strong behavioural repulsion and are therefore 

likely to pass through the racks (Figure 85). 

 



96 SHP technologies - European state-of-the-art innovations 

 

Figure 85: Conceptual plan of the location of downstream bypasses at hydroelectric plant intakes  
(from Larinier, et al., 2002) 

3.7.3.7 Fish Guidance Structures 

The design of racks or louvers as fish guidance structures should comply the following criteria: (I) efficient fish 

protection and guidance, (II) reduced head losses, (III) robustness against driftwood and sediment clogging and 

(IV) economy (Albayrak et al., 2017). 

The challenge is to collect and guide a high number of downstream migrating fish with a low proportion of the 

discharge (few percent of the maximum turbine discharge). To achieve high efficiency, the fish guidance struc-

tures should protect the fish from entering the turbines; guide them towards bypasses without a significant time 

lag and transfer them downstream without any damages. 

Fish guidance structures are classified into two main categories: (I) inclined bar racks and (II) angled bar racks 

and louvers.  

Inclined bar racks 

Inclined bar racks (Figure 86 and Figure 87) are installed perpendicularly to the flow direction and at an angle ß 

to the invert in order to guide fish towards one or several surface bypasses located at the top of the rack. 
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Figure 86: Longitudinal view of an inclined bar rack (source: Courret, et al., 2008) 

 

 

Figure 87: Inclined bar rack with openings to the bypass channel system (source: P. Rutschmann) 

Angled bar racks and louvers 

Angled bar racks and louvers are installed at an angle α to the flow direction in plan view to guide fish towards a 

bypass located at the downstream end of the rack. Four types of angled racks with vertical bars can be distin-

guished: “Classical” angled bar rack (Figure 88), modified angled bar rack (MBR) (Figure 89), angled bar rack with 

bars oriented in the streamwise direction and louver with bars perpendicularly to the approach flow (Figure 90). 

These rack structures can act as a physical or behavioural barrier. It depends on the bar spacing and fish size. The 

rack constitutes a physical barrier when the bar spacing is lower than 1/10 of body length for most species in-

cluding salmonids, and except for eels which require bar spacing lower than 3 % of their length (Ebel, 2013). 

Angled bar racks with horizontal bars constitute a fifth type (Figure 88). The typical bar spacing ranges from 10-

30 mm. Thereby, horizontal bar racks act as physical barriers to the majority of fish. For louvers, fish perceive the 

highly turbulent zones around the bars, react with avoidance (behavioural barrier) and are guided to the bypass. 

Such “louver effect” also exists for the angled bar rack and modified angled bar rack. 
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Figure 88: The horizontal bar rack of residual flow HPP Schiffmühle, Switzerland, during reservoir drawdown in 
July 2018 (source: J. Meister, VAW) 

 

Figure 89: Detailed geometric view of louver, angled bar rack and modified angled bar rack (MBR)  
(from Boes, et al., 2017) 
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Figure 90: a) “classical” angled bar rack, and b) angled bar rack with bars in the streamwise direction (from 
Raynal, et al., 2014) 

3.7.3.8 Horizontal racks and innovative HPP designs 

3.7.3.8.1 Horizontal racks 

In mountainous regions, some of the water intakes are of bottom-type, also called Tyrolean intakes, particularly 

on streams with great sediment transport and sites with complex access. There are many examples of these 

water intakes, in mainly higher altitudes of 1,000-1,500 m altitude, with natural population of trout upstream. 

The rack or the perforated plate is included within the down-stream weir face, more or less inclined in the down-

stream direction so that the trashes and sediments are pushed out by the flow (self-cleaning intake). Three types 

of such intakes exist: The classical bottom-type intake with longitudinal bars, the Lépine water-intake with a 

perforated plate and the Coanda water intake with transversal bars using the Coanda effect (Figure 91). At bot-

tom-type intakes, downstream migration of fishes can be handled at the intake itself or downstream in desilting 

pools with “classical” fishfriendly bar racks combined with bypasses. 

 

Figure 91: Coanda water intake illustration and example of Coanda water intake of Escouloubre (977 m alti-
tude) on the Aude river, France (Source: AFB) 

3.7.3.8.2 Innovative HPP designs 

A horizontal screen, a conventional but submerged Kaplan turbine with permanent magnetic generator, a down-

stream sluice gate which can be raised or lowered for trash rack cleaning or during floods and with surface-near 

and/or bottom-near openings in the gate for fish downstream migration are features of the TUM Hydroshaft 

Concept (Rutschmann, et al., 2011, Figure 92). The Small bar clearance (≤ 20 mm), low normal velocities (0.3 to 

≤ 0.5 m/s maximum value) and bottom-near and surface-near openings in the sluice gate immediately at the 

intake to the turbine and a natural behavioral barrier through the horizontal, bottom parallel rack are meant to 

provide favorable conditions for fish protection and downstream passage of fish. Experiments at a small scale 

prototype with trouts, graylings, barbels, bullheads and minnows showed high efficiency for potamodromous 
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species. The observed efficiency is 100 % for fishes more than ten times larger the bar clearance (except the eel) 

due to the physical barrier of the trash rack. For fishes smaller ten times the bar clearance, large partitions of 

downstream migrating fish passed through the bypass (e.g. 65 % of minnow (Phoxinus phoxinus) with 59 mm 

average body length and 60 – 80 % of bullhead (Cottus gobio) with 81 mm body length (Geiger, et al., 2016) 

depending on fish length, flow velocity and bar clearance. The found relations provide in principle further poten-

tial for ecological improvements. A first commercial facility of 450 kW is operational since beginning of 2020 and 

fish downstream passage investigations are currently conducted. 

 

Figure 92: Visualization of the Hydro Shaft Concept (top line) and 450 kW at Grossweil, Germany (bottom line) 
(Source: top line: TUM and bottom line: A. Sepp) 
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4 SHP Development Process 

The development of a SHP is a very complex process, which involves many specialist skills, needed to deal with 

the variety of problems that usually characterize the design of a hydro scheme. 

In detail, the technical items include the following expert area: 

• hydrology; 

• geology and geotechnics; 

• hydraulics; 

• ecology; 

• civil engineering; 

• mechanical engineering; 

• electrical engineering; 

• electronic engineering. 

Moreover, a specific expertise is requested for tenders management, authorization procedures and financial 

closure of the investment. 

Therefore it is very important that the project of a hydroelectric plant is addressed by a team capable of working 

in close collaboration. 

For SHP, this approach can be too expensive and therefore many of the skills are entrusted to a small team or 

even to a single designer, who must integrate the low level of specialization in certain areas with a long, specific 

experience in the hydroelectric field. 

 Planning and Design Process 

A typical problem of the design process is not only technical, but also concerning how to finance it. 

This is because developing a detailed plan runs the risk of spending money without being sure that then the plant 

will be built or, in any case, without knowing first what its possible profitability will be. 

For this reason, it is appropriate to proceed with the intermediate, lower cost steps, before incurring the signifi-

cant costs of a real feasibility study. 

The steps of the design process can be the following. 

1. Site selection 

2. Prefeasibility study 

3. Feasibility study 

4. Construction design 

Each step corresponds to a share of the final cost of the design and this allows to avoid high costs at the beginning 

and also to calibrate them according to the available funds: for example, the feasibility study can be developed 

only after having verified, through a pre-feasibility study, that the plant has a good chance of being feasible from 

a technical, environmental, legal and, finally, financial point of view. 

4.1.1 Site Selection 

The site selection process usually starts from a theoretical analysis carried out in the office and it is accomplished 

by on-site visits. 
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The first selection, made on a cartographic basis (paper or digital terrain maps), aims to identify the sections of 

the watercourse where the energy gradient, i.e. the gravitational potential per unit length (kW/km), has the 

greatest values. This normally occurs in the sections between a river confluence (maximization of the available 

flow rates) and waterfalls (maximization of the head). For some countries, general studies are available on suit-

able sites for the hydropower exploitation and they are a good starting point for a preliminary site selection. 

Once an interesting stretch of a river has been identified, it is mandatory to carry out one or more site visits, 

which basically constitute the first feasibility assessment. 

In fact, these visits on site are a way to check if there are any site killing constraints, i.e. situations that undoubt-

edly advise against the construction of the plant, thus avoiding the costs of the subsequent study phases. The 

issue of this visit will not be numerical, but only YES, it is worth proceeding with further study, or NO, better to 

stop immediately to avoid throwing money away. 

The killing constraints can be of different kinds; the most usual are: 

• instability of the slopes, due to their geological nature, of the area where the main plant structures are 

planned to be installed: we underline that, from common experience, geological unexpected events are the 

main cause of the increase in the construction costs of hydroelectric plants, sometimes even going so far as 

to cause them to be abandoned in the executive phase; 

• poor geotechnical quality of the ground on which the foundation of the main works (such as intake, pond, 

penstock anchoring blocks and powerhouse) are to be built, or the presence of groundwater very close to 

the surface of the ground; temporary geotechnical works often are a very significant part of the civil costs, 

especially for low head plants, moreover they are a time consuming activity; 

• flood levels of the river that require large and expensive protection works; 

• identification of existing or planned uses of available water for drinking, agricultural or industrial aims, which 

may be prioritized by law or by already stated rights over the envisaged hydroelectric one; 

• problematical access facilities to the key parts of the plant and in particular to the intake works: technically, 

any difficulty can be overcome, but the costs can become unsustainable, with reference to the profitability 

of the plant, especially in the case of small plants; 

• high environmental sensitivity of the areas involved in the scheme: also in this case suitable technical solu-

tions can be found, which can however cause significant impacts on the profitability of the investment; 

• existence of critical problems for the acquisition of the areas necessary to house the plant structures, for 

example for high economic value of the land; high splitting of properties; expected opposition of the owners 

to sell the areas; presence of taboo areas for religious reasons or related to specific traditions. 

A very important remark: this first phase, and in particular the on-site survey, must be carried out by a very 

experienced engineer in hydroelectric plants, because a great ability is required to identify the most significant 

constraints, to be further investigated, based only on what he sees or with the help of very simple measurements. 

We are used to compare this phase to the first examination at the first aid, where the experience of the doctor 

who performs it is essential to quickly assess the severity of the symptoms and decide which instrumental insights 

must be performed. 

4.1.2 Pre-Feasibility Study 

The pre-feasibility study has the aim to decide whether to go on with the project and, if so, to settle the team 

which will follow it and look for the economic resources to finance it. 

In this phase of the design process, the plant scheme is chosen among all possible ones and this allows to verify 

with good approximation the feasibility of the project from the technical, environmental, legal and financial point 

of views. 
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Ultimately, the main issues of a pre-feasibility study is an economic assessment of the investment, integrated 

with a technical description of the plant layout with a level of detail suitable for identifying, with sufficient relia-

bility, the costs (construction and operating ones), the expected production, the destination of the energy pro-

duced and its value, the environmental impacts and their mitigation, the authorization process and the construc-

tion timing. Another important issue is the chapter Recommendations, where critical issues are quoted in order 

to be faced and removed in the following design phases. For example, these critical issues can be related to 

geology, sale contracts with private individuals or utilities, permits of various kinds or particular technical aspects 

of the scheme. 

The drawings accompanying the pre-feasibility study have the minimum level necessary to fully illustrate the 

plant choices and to calculate the costs parametrically, i.e. starting from a database of similar schemes. 

From a technical point of view, the four pillars on which the pre-feasibility study is based are the following. 

• Topography. It allows to define the main issues that affect the plant costs and its performances, such as the 

gross head and the length of the waterways. The best option for low head schemes is the on-site survey by 

means of a total station. Otherwise, a suitable evaluation, at the pre-feasibility level, can be acquired on 

paper maps or digital ones, if available. The values from simple GPS devices must be carefully checked be-

fore using them in the computations. 

• Hydrology. It allows to define the significant river and plant flow rates, that are: minimum flow rate during 

the dry season, maximum flood with different return periods (10; 50; 100 years); reserved flow for ecolog-

ical purposes, maximum flow diverted by the plant; plant mean flow on multiannual basis (5 years minimum; 

15 better; 30 best). If direct measures aren’t available, at the pre-feasibility level the inputs for the hydro-

logical analysis can derived from similar drainage areas or from literature data regarding flow rates and 

rainfall distribution. 

• Environmental analysis. A preliminary analysis of the environmental constraints is strongly needed to eval-

uate their outcomes, affecting the real exploitable flow rate and the costs of the scheme, due to the miti-

gation measures during both the construction and operating phases. 

• Authorization procedures. Permits/licenses procedures can have dramatic outcomes on the design and con-

struction costs, and on the project implementation time as well. 

In addition to the above-mentioned topics, the pre-feasibility study must be supported by a market analysis to 

identify the buyers of the generated electricity, preliminary prices and duration of the power purchase agree-

ment. 

4.1.3 Feasibility Study 

The feasibility study allows to define the plant project in all details, removing any critical issues reported in the 

pre-feasibility study. The drawings of the feasibility study are based on detailed topographic surveys, the costs 

of the civil works are calculated analytically, and those of the electromechanical works are based on offers from 

potential suppliers. 

Basically, the feasibility study has the same structure as the pre-feasibility study, but it is based on more site-

specific inputs and more detailed analyses. In particular: 

• Topography: however it is performed, it must have a level of detail at least equivalent to a survey carried 

out by a total station 

• Hydrology: possibly based on datasets from measures taken directly at the intake section. A good approach 

is to install a gauge station at the intake section immediately after the first positive evaluation of the site, in 

order to have some direct measurement at least during the time between the site selection and the feasi-

bility study. 



104 SHP technologies - European state-of-the-art innovations 

• Environmental assessment: if particularly sensitive sites are involved, it must be deepened with direct on-

site measurements of the most critical parameters for the river biology. 

• Geology and geotechnics: if critical situations are supposed to be there, sounding or drilling samples of the 

subsoil is recommended to be taken and analyzed in a laboratory; this is usually mandatory for low head 

schemes. 

The market analysis must also be deepened in more realistic terms than the one reported in the pre-feasibility 

study. 

 Permits and Licencing Process 

The implementation of a SHP involves many and quite different rules, someone at National level, others at Re-

gional, Province or even municipality level, and this means significant times and costs required to get everything 

needed to start the plant construction and the energy production. 

At least the following licenses/permits are usually needed. 

• Water right 

• Energy generation  

• Impact on water quality, flora and fauna of the river, and all environmental aspects 

• Building law and construction requirements 

• Connection to the grid 

• Land properties 

Usually the most critical procedures are related to the water use license, because they involve technical and 

environmental aspects of the project and, moreover, can be under the competition of other proposers interested 

to the same water exploitation. 

Generally speaking, a quite effective approach is to share the project with the local communities, after the water 

right has been acquired, in order to remove, or mitigate at least, the main opposition causes. 

This approach facilitates also the authorization procedures at National or Regional level, and it can avoid prob-

lems during the construction phase, always critical. 

 Financial closure 

In the prefeasibility study a financial survey can be quoted, based on usual financial inputs, but at feasibility level 

the financial analysis and the final financing scheme design should better be carried out by the financial manager 

of the proposer or by an external consultant. 

This is because the final financial assessment is very sophisticated and requires some inputs that strictly depend 

on the specific situation of the proposer, such as, for example: possible savings on the taxation of proposer profits 

following the investment; specific depreciation facilities by law; equity share of the investment; already existing 

access facilities to bank loans for the proposer; National or International incentives for the RES production or, in 

general, on new investments, and so on. 

Also the managing costs of the plant can be affected by peculiar situations of the proposer, such as, for example, 

already existing teams managing other hydropower plants or the equipment installed in the firms owned by the 

proposer; external firms specialized in the plant management available not too far from the plant site, specific 

insurance facilities for the proposer, and so on. 

Consequently, the technical designer must provide the following issues with great accuracy to the proposer: 

• construction costs; 
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• construction schedule, including the related cashflow; 

• annual energy production (the net amount that can be sold!) and expected starting date of production (in-

comes start); 

• costs for O&M (manpower, spare parts and technical depreciation); 

• technical life of the main components of the plant: civil works (different values can be set for intake, dams, 

waterways, powerhouse and ancillary facilities); electromechanical equipment (different values for rotating 

machines; electrical components; electronic devices, power lines and so on) 

• a risk analysis, to be taken as a basis for the insurance contracts. 

 Construction and commissioning 

Before starting with the building activities, a construction design – also called detailed design – must be imple-

mented. 

Basically, it contains all the construction details, such as the steel bars for the reinforced concrete; detailed 

schemes for the plant structures tracing on the site; technical specifications for the construction materials, con-

tract documentation for the suppliers and so on. Moreover, it includes the technical specifications for the elec-

tromechanical supplies, that are mainly generating units, units and plant control panels, electric cubicles, trans-

formers, remote control facilities, cranes, electric lines. 

Since the authorization procedures often cause changes to the initial project, construction design should only be 

implemented after all permits and licenses have been obtained. 

The design must comply with the national standards, but, if the national standards do not cover all aspects of 

hydropower, it can conform the international ones, such as the EN-ISO regulations or USACE guidelines. 

The construction design is also a good documentation to manage the main procurements, because it describes 

in detail works, supplies, and the site-specific constraints that could affect the contractual obligation and prices. 

With respect to the construction activities, it’s a common experience that the hydropower plant construction is 

a long process, because it’s very often located in remote areas characterized by quite difficult access facilities. 

Moreover, the weather conditions can interfere with on-site activities, even stopping them during the rainy or 

cold seasons. Other time constraints come from the equipment supply, which needs significant amount of 

months to be delivered and commissioned; the overseas transports and the related customs procedures, some-

time complex and time consuming; the access road and other infrastructures to be previously built, than reha-

bilitated after every rainy season. Considering all these items, the construction of a SHP typically takes 12-24 

months. 

When the plant has finally been completed, the design enters another challenging phase, the plant commission-

ing. 

A typical commissioning procedure follows the following steps. 

• An overall inspection of the works and equipment, to verify that they comply with the contractual specifi-

cations 

• Checking that the relevant documentation concerning the quality certifications and tests in the factory or 

on site is available and consistent 

• Dry test, to verify the basic operation, mainly the ones connected with the emergency situation (safety 

valves and gates, for examples) 

• Plant start-up chain activation and functioning test up to the maximum capacity, including the automatic 

parallel with the national grid if requested 

• Performance tests to assess the unit efficiency (overall or separately for turbine and generator, depending 

on the contractual statements) 
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• Trial operating test, that means monitoring the unit in operation without any failures for a stated time (usu-

ally 10-15 day for the SHP) 

• Specific and thorough training of the plant operators 

Only after the plant passes all the above-mentioned tests, the warrantee period of the equipment can start. 

To finalize the commissioning, it is strongly recommended to deliver the “as built” version of the drawing, that 

are key elements for carrying out the plant O&M activities in a safe an efficient way. 

 Operation & Maintenance (O&M) 

The plant performance, and its lifetime as well, dramatically depend on the operation and maintenance quality. 

In order to achieve it, the best way is to introduce in the contracts with the main suppliers a clear obligation to 

carry out a thorough training of the operators, based on clear and complete manuals and practical exercises. 

At the end of the training activities, operators are requested to assess them, by declaring that they have received 

a satisfactory training to safely operate the plant in every working situation. 

A very significant improvement should be to involve the future plant managers in the erection activities, so they 

achieve a deep knowledge directly working on the equipment that they have to maintain afterwards. 

It is important to underline that the suppliers manuals are only a part of the plant O&M manual, which must 

include the instructions to operate and maintain the civil and hydraulic works, that typically can cause the most 

dramatic and dangerous outages of the hydroelectric plant. 

A typical index of the O&M consists in the following chapters, at least. 

• Plant description and operating limits 

• Administrative documentation (permits, licenses, contracts, monitoring and commissioning reports, …) 

• Technical documentation (as built drawings, technical specifications, equipment manuals, ...) 

• Instructions to activate the water derivation (detailed description of the operations on gates and valves; 

parameters to be monitored during the operation, ...) 

• Instructions to start and to stop the generating units and manage them in every operating condition 

• O&M: daily, weekly, monthly, and annual activities, listed also in suitable checklists 

• Template of the register where every O&M activity is recorded 
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5 Project Finance for international Small Hydropower Projects 

The main concepts underlying terms and conditions of finance are 1) the theoretical risk-determinants from the 

Capital Asset Pricing Model and 2) the method of financing i.e. corporate and/or project finance. For ease of 

understanding the financial landscape for energy access finance in emerging markets some finance concepts are 

explained first. These are: 1) The Capital Asset Pricing Model (CAPM), and 2) Project Finance versus Corporate 

Finance. 

 The Capital Asset Pricing Model 

In finance, the CAPM is a model used to determine a theoretically appropriate ‘required rate of return’ of an 

asset which allows to make decisions about adding assets to a diversified portfolio (Chong, Jin, and Philips, 2013 

and Chen, 2019). The CAPM is a model for pricing of an individual security or portfolio, derived from the academic 

world in the 70’s of last century. The details of the CAPM can be found in any finance textbook. The underlying 

relationship between perceived risk in combination with the time-value of money and the required reward is 

central in the model (the higher the perceived risk the higher the required return). 

The (international) CAPM is accompanied by a formula 

(Kenton, 2020) which is shown here since reference will be 

made to some components furtheron in this chapter. 

The risk-free rate of return accounts for the time-value of 

money and is typically an investment in government bonds 

of high credit rating (AAA for example), an investment of 

‘zero risk‘. 
 

The beta of an investment is “a measure of how much risk the investment will add to a portfolio that looks like 

the market (beta larger than one increases the risk of a portfolio, lower than one reduces such risk)“. The market 

risk premium is the return expected by investors or lenders on top of the risk free rate of return. 

The perceived risk and the translation into the required reward at the individual proposition’s level is referred to 

as the ‘cost of capital‘. As a tool for investment it dictates to invest in initiatives and projects that will pro-vide 

returns that exceed the cost of their capital. The cost of capital includes both the cost of equity and debt in a 

weighted manner in accordance with a preferred or the existing capital structure of a project or company. Cal-

culated this way it is referred to as the ‘Weighted-average Cost of Capital‘ (WACC). 

The cost of debt is the interest rate a company or 

the project is charged, but net from corporate 

taxes since interest in most cases is tax-deductible. 

This can also be captured in a formula as per the 

box to the right (see source CAPM). 
 

The cost of equity generally speaking is more com-

plicated to calculate since the rate of return re-

quired by investors is not as clearly defined com-

pared to the cost of debt, in specific the ‘beta‘ com-

ponent which is often approached as an average 

beta of a group of similar (publicly-listed) compa-

nies. For the cost of equity the same calculation is 

performed as in the CAPM and depicted to the 

right.  
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The working of the WACC in renewable energy propositions has been investigated in a H2020 project called 

Aures II (2020). It is interesting to learn about the differences Aures found in cost of equity (range 6.0-20.0 %), 

cost of debt (range 1.7-11.0 %) and the overall cost of capital (range 3.0-13.7 %) for the 28 European countries 

at the time (2014-2016). The differences were attributed to 

1. country specific risks (independently from renewable energy risks),  

2. specific renewable energy risk premium for respective country, and  

3. competition between investors and banks. Also, the effects of cost of capital on levelized cost of electricity 
(LCOE) have been found to be very significant.  

‘Risk’ is a relative concept and in finance it is often broken down in components. A good example is ‘country risk’ 

which is in the above study by Aures one of the main causes for differences in WACC, leave alone for emerging 

markets. This risk category is widely covered by among others ‘credit agencies‘. A rating below BBB is non-invest-

ment grade or ‘speculative’. Projects or companies generally speaking cannot be rated higher than the country 

in which they are established / operate from. International (commercial) banks need to meet Basel-solvency 

requirements (the international regulatory requirements for financial institutions) which are too high for activi-

ties in countries with speculative ratings – pricing of a loan to compensate for this would simply lead to uneco-

nomic investments vis-à-vis what for example financial development institutions (‘DFIs‘) can offer.  

The ‘country risk’ is one of several risk categories that are at play in the risk assessment of a renewable energy 

asset risk class. It is probably the most important one since it determines to a very large extent the possibilities 

in finance. Mind, credit agencies perform rating tasks by rigorous analysis where all risks assessed are weighted 

relatively against each other. Renewable energy propositions in emerging markets often have no associated 

credit rating. 

 Project versus Corporate Finance 

Another important concept in understanding finance of energy access in emerging markets is the understanding 

of two distinct ways of financing an asset. An ‘asset’ in this chapter is used as reference to a renewable energy 

proposition in the form of an income earning project or corporate. An investment in the shares of the project or 

into a company is referred to as an asset for the equity provider and a loan to the project or company is an asset-

position for a loan provider. 

Finance is about risk analysis, risk mitigation and risk allocation. Very high-level it comes in two flavours: 1) cor-

porate (or company) finance, and 2) project finance. 

Project finance originated from the allocation of finance to an externalised (new) company because corporate 

finance would create too much single-asset risk on the balance-sheet of the corporation i.e. the oil industry used 

this structure because one exploration-venture could have a tremendous impact on the balance sheet. 

Because of the energy crises in 1973 and 1979 the United States adopted legislation by the Public Utility Legisla-

tion Policies Act (‘PURPA‘) in 1978 aimed in first instance at energy efficiency but used in the 1980’s to introduce 

private sector generation of electricity under the independent power producer scheme (‘IPP‘) with pre-set pa-

rameters like 40 % equity and a certain minimum equity return threshold (American History, 2020). PURPA al-

lowed for a large portion of ‘guaranteed’ payments for the capacity added to the grid (‘Capacity Fees’) and some 

fees for compensating fully running cost (‘Energy Fees’). This ‘IPP’-scheme was exported to emerging markets 

through companies like Enron, AES, but also in other infrastructure sectors like water. The underlying principle 

is the CAPM which stipulates a.o. that more (perceived) risk requires more expected equity returns as indicated 

earlier. Hence, on a 40 % equity in a project the return requirements in Africa often have > 20 % (Harper, 2015) 

per annum (in hard currency) in addition to stringent risk mitigation measures such as full termination compen-

sation clauses, etc. and all guaranteed by respective government or even reserved already. 
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Project finance is lending to a special purpose vehicle/company (‘SPC‘). Project finance is based on analysis of 

future cash flow as presented in a business plan and reflected in a financial model. Key ‘monitoring’ covenant is 

the minimum debt service coverage ratio (‘DSCR‘) which reflects how much net cash is required in future in 

relation to debt service obligation i.e. if 100 is the debt service (interest + principal repayment) in a given year 

than the DSCR needs to calculate how net cash relates to this (if net cash is 150 in that year the DSCR is 150:100 

= 1.50 x). 

Corporate finance is lending to a corporate entity, being a start-up or an established company. In corporate 

finance the debt capacity is determined by track record of the company and the strength of the balance-sheet 

among others the equity available or the possibility to call in equity if and when deemed required (for cost over-

runs for example). 

The debt servicing capacity is often considered maximized against an equity (including subordinated debt) posi-

tion of some 40 % of the balance-sheet, i.e. 60 % borrowing but obviously to be justified by the underlying busi-

ness plan on future debt service possibilities. Key ‘monitoring’ covenants are the Debt:Equity Ratio (D:E ratio) 

and liquidity ratio’s. Liquidity ratio’s express the firm’s capacity to meet short term obligations such as the current 

ratio which determines short term liquid assets divided by short term (debt) obligations and which indicates a 

healthy situation if this ratio is 1.5 x or higher. 

Corporate finance can be considered by a lender or investor at any moment, project finance generally works 

towards one moment (‘financial close’). Portfolios of smaller ‘projects’ (like rooftop solar) can have both timing 

elements simultaneously (a loan to the company but allowed for disbursement at reaching milestones at each 

rooftop-project level) but most often sequential finance is the case. It is also good to mention that corporate 

finance much more has to consider vested interests from for example existing lenders (new borrowing subject 

to approval from existing lenders) compared to project finance. 

The CAPM and the IPP-schemes were both developed in the last century and had a strong influence on each 

other. The legislation accompanying the IPP-schemes to allow for an enabling environment for the mobilisation 

of the private sector funders served as a standard for many other countries. At banks the risk allocation process 

in IPPs and the governmental support became the parameters for the funding of IPPs detailed in ‘internal policy 

papers’. These policies allow the ‘front-office’ to structure transactions in a way credit analysts are able to eval-

uate against the internal investment or lending policies. Also, for selling down loans to other funders the policies 

are to some extent accepted amongst most financial institutions that have a focus on the energy sector. 

Renewable energy’ as a financial ‘asset class’ can be financed by the private sector very well and lends itself for 

far-stretched standardisation and therewith securitization. Understanding finance of renewable energy by the 

private sector in ‘perfect’ financial markets makes clear where finance is different in ‘imperfect’ financial markets 

which includes the markets where HYPOSO has its focus. This understanding allows for determination of the best 

interventions, if any, but it allows as well to realistically map sources of funding since they are not as widespread 

in imperfect markets. 

Full market-based solutions are less bankable in emerging markets and negotiated or ‘unsolicited‘ transactions 

are difficult to embrace by governments (‘tomorrow a better deal can be offered‘), so in practice the feed-in 

regime proved some value for many years in many countries. Nowadays, more and more countries adopt an 

‘auction-system‘ either within a feed-in regime (provides for upper maximum bidding price) or not. 

The European Union realised the importance of auctions many years ago and supported a large consortium under 

the H2020 program to define the enabling environment for auctions. The H2020 project is named Aures – pro-

moting effective renewable energy auctions (AURES project, 2017). The delivery models are also applicable to 

hydropower projects although the characteristics of hydropower projects do not allow easily for tendering / auc-

tions since most projects are very site-specific. The expenses incurred for development of such sites is often a 

barrier in case in the end tendering is requested (AURES II project, 2020). 
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 Funding sources 

Due to Basel-regulations international commercial banks are not very active, if at all, in funding directly renewa-

ble energy in emerging markets, leave alone to small-scale hydropower assets. If they are active in emerging 

markets they are so in financing assets for example that require much shorter tenors compared to renewable 

energy, 3 to 5 years (in telecom transactions for example) versus 10 to 18 years.  

Without the international banks the private sector from a funding perspective is largely absent and therewith 

also the ‘bridging vehicles’ to institutional investors, pension funds, insurance companies, retail lender, etc. The 

following graphs show high-level the ‘gap’ in availability of financial sources for renewable energy in emerging 

countries with non-investment grade ratings: 

 

Figure 93: Perfect and Imperfect Markets (1to3 Capital) 

These (overly-simplified) graphs aim at showing the lack of some funding sources for renewable energy, like 

institutional investors, commercial banks, etc. in emerging markets, at least absent at some desired scale. Be-

cause of the lack of some major blocks of funding also the number of financeable projects falls short with expec-

tations and international 2030-goals regarding climate change targets. The projects that are developed will need 

to be adopted by lesser institutions and relatively more of these institutions are development agents that in 

principal ‘cannot’ advise since then they also need to provide the money (they are the so-called ‘lenders of last 

resort’) and they are ‘equals’, hence, apart from IFC not one of them stands out as lead arranging with ‘under-

writing’ on behalf of others which is a common approach among commercial banks. ‘There are no bankable 

projects’ is often mentioned for Africa and South-East Asian countries. Other regions like Latin America face a 

lack of funding for certain type of projects like small scale hydropower, e-mobility, etc. Further, because devel-

opment institutions cannot distort the market the CAPM is very well-alive in funding decisions in emerging mar-

kets, no matter if one is supportive at all to the theoretical CAPM-scheme. Mind, ‘lender of last resort’ also often 

indicates that there is a lack of equity in the market which is a bracket also offered by development institutions, 

hence, often in the same transaction equity and debt is provided which needs to be the more so to be market-

conform i.e. CAPM-proof. Nevertheless, funding is available to and in emerging markets through schemes that 

intelligently work with or around these market-conformity rules. These are detailed in the next paragraphs more 

or less in the order of descending from the financial parties that can assume the most political risks to parties 

that assume these risks at a later stage either in the financing process or at lower risk levels. 
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 Public Sector Funding and EXIM Banks 

Finance parties that take account of large sums of finance to hydropower in emerging markets are the World 

Bank and EXIM Banks and Export Credit Agencies (ECA) which concerns public funding to the public sector (enti-

ties) in the emerging markets as depicted in the diagram to the right, but with some ‘private sector characteris-

tics’. The funding interest for the World Bank is based on its mandate to support in specific the International 

Development Association (IDA) - countries. For Exim Banks the support of its own industry that exports and/or 

realises works in emerging markets is the key driver for support. 

World Bank 

The World Bank Group (WBG) takes a very prominent role in the segment of finance. The World Bank can be 

active in the public sector only and / or the private sector as well (IDA, 2020). 

World Bank and Public Sector 

A public sector intervention is for example a grant made available for a hydropower project. In 2014 for example 

the World Bank made USD 100 million available as a grant out of a USD 270 million project cost for the ‘Jiji and 

Mulembwe’ hydropower projects in the Republic of Burundi (The World Bank, 2014). Through its position the 

World Bank mobilised a ‘coalition of donors that includes the African Development Bank (AFDB), European In-

vestment Bank (EIB), European Union (EU), the Government of Burundi and the utility company Regideso.  

The World Bank offers also ‘concessional funding’ i.e. funding at favorable terms and conditions which deviates 

from market prices that would be derived under ‘CAPM’ but are justified from international agreements to sup-

port the IDA-countries, a group of 74 countries at the moment: “IDA offers a range of financing products - from 

grants to loans on terms of the International Bank for Reconstruction and Development (IBRD) - that take into 

account the variations in economic and social development of IDA countries.“ 

World Bank and Private Sector IDA-Countries 

When the IDA facilities got replenished for the 18th time (IDA-18) 

the World Bank created a USD 2.5 billion private sector window 

(PSW) together with its subsidiaries International Finance Corpora-

tion (IFC) and the multilateral investment guarantee agency (MIGA) 

with the aim to catalyze private sector investment in IDA-only 

countries.IDA-19 is being proposed now at the same funding level 

of USD 2.5 billion. The IDA PSW is seen as an option when there is 

no commercial solution and the World Bank’s other tools and ap-

proaches are insufficient. The IDA PSW builds on the World Bank’s 

support for private sector investment in IDA countries in excess of 

USD 100 billion in the last decade: “The IDA PSW is deployed 

through four facilities: 

1. Local Currency Facility to provide long-term local currency 

IFC investments in IDA countries where capital markets are 

not developed, and market solutions are not sufficiently 

available. 

2. Blended Finance Facility to blend PSW support with pio-

neering IFC investments across sectors with high develop-

ment impact, including small and medium enterprises 

An example of the working of the IDA-

PSW scheme is described below. 

In the Solomon Islands, a 15 MW hy-

dropower plant of USD 240.8 million 

is getting financed primarily through 

concessional loans and grants from 

DFIs. The plant and associated 72-me-

ter-high roller-compacted-concrete 

dam are located on the Tina River, 

about 30 kilometers south-east of Ho-

niara, the capital of the Solomon Is-

lands. It is the first utility-scale hydro-

power project to be developed in the 

Solomon Islands. 

In this project MIGA issued guaran-

tees for 90 % of equity investments 

(USD 14.1 million) to cover the invest-

ments and future earnings in the pro-

ject for 20 years. The guarantees pro-

vide protection against expropriation, 

breach of contract and war & civil dis-

turbance. The project sells electricity 
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(SMEs), agribusiness, health, education, affordable hous-

ing, infrastructure, climate change mitigation and adapta-

tion, among others. 

3. Risk Mitigation Facility to provide project-based guaran-

tees without sovereign indemnity to crowd-in private in-

vestment in large infrastructure projects 

4. MIGA Guarantee Facility to expand coverage through 

shared first-loss and risk participation via MIGA reinsur-

ance. 

The IDA PSW facilitates investments but does not fund private in-

vestment on its own. Through different facilities, it backstops or 

blends with IFC investments or MIGA guarantees to support pri-

vate-sector investments.” 

once operational under a 30 year 

power purchase agreement (MIGA, 

2020). 

Overall, the WBG seems to offer finance solutions from many angles at very substantial positions. The funding 

made available and mobilized from others appears truly unrivalled. Country to country support in one sector and 

specific one type of electricity generation often has many spin-offs which also benefit SHPs. For many countries 

it is already quite a quest to obtain funding for infrastructural works for the longer term, hence, if it is available 

at concessional terms at public sector level this route is preferred by many. 

 Development Finance Institutes and Development Funds 

Parties that can be classified as development finance institutes are available at many levels throughout econo-

mies worldwide ranging from municipal development agents, provincial and industry development agents, re-

gional and national development institutions as well as supranational entities, the multilateral finance institu-

tions. A large group of these institutions is focussing on emerging markets or were established with the purpose 

to be active in emerging markets only. 

Broadly speaking ‘two’ groups of development banks can be identified: 1) multilaterals where more than one 

government is shareholder / participant in the institutions (MFI), and 2) bilateral institutions with one govern-

ment being (majority) shareholder and where the institute functions as an instrument for the country’s develop-

ment agenda (DFI). Both type of institutions have an obligation to catalyse other funding (international commer-

cial banks for example) and to be additional to market-participants. 

Multilateral Finance Institutions 

MFIs have the mandate to act both in the public sector as well as in the private sector. Most MFIs make the focus 

between the two approaches internally and sometimes name the private sector focus differently like ‘IFC’ for the 

World Bank as a group. MFIs have large syndication programs to other type of funders like pension funds, com-

mercial banks, etc. MFIs can act alone, i.e. provide for the full funding solutions offering blended funding, equity, 

subordinated debt and senior debt, and are able to perform the ‘duty of care’ (the banking and insurance sectors 

have been experiencing an ever increasing requirement regarding duty of care for products and services since 

1990. This care includes obligations to investigate risks, inform about risks – sufficiently - and warn for them, 

both in relation to products and services provided (including ‘advisory‘)), associated with selling down financial 

products and providing associated services. Because of the obligation to catalyse other funding and be additional 

to the market it is key for MFIs (and DFIs) to operate within the CAPM-type of market-setting.  
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Bilateral Development Institutions  

Bilateral development institutions function like commercial banks but with a specific emerging market mandate. 

Since most countries have a bilateral development bank they tend to cooperate, hence, operate in so-called ‘club 

deals’. Different from MFI’s the bilateral institutions are not picking up the full financing but reduce risks by taking 

up to 25 or 30 % of the total project cost or facility. From a risk perspective they therefore need 2 other banks 

to offer the full financing. Working in club deals is probably quicker but has the disadvantage that transparency 

is less compared to a market-syndicated transaction. 

 Commercial Banks with the Use of Export Insurance 

HYPOSO is about promotion of European hydropower solutions with 5 countries in specific for piloting. These 5 

countries can be classified as emerging markets. Most hydropower industry players ‘export’ their equipment and 

have developed methods of finance their exports. Governments promote export of goods and services and also 

create finance methods. These methods can be public-to-public sector (like China often does) or public (support)-

to-private sector. 

International Commercial Banks 

In order to create a level playing field in the support of exports it has been internationally agreed to what extent 

‘Official Development Aid’ (ODA) or ‘tied aid’ can be used in terms and conditions of export finance or export 

guarantees. How this is arranged in detail can be found at publications by the OECD (2013). The use of ODA is 

bound by a stringent set of reporting measures. The point made here is that export finance (or guarantees) based 

on ODA on paper provide for economic preferred solutions, they make exports more attractive. An industry 

player that exports to a purchaser that resides in an eligible country to receive tied aid might ask its commercial 

banking relation at home to find out the best export finance possibility and / or guarantee. Mind, in these state-

support programs some remaining risks are to be carried by commercial banks such as for example 5 % of the 

loan ‘uncovered’ (i.e. the loan is for 95 % covered through the ECA). 

The ECA-coverage one might be looking for can be limited to (certain) political risks (expropriation, convertibility 

of currency and transferability risks) or may include commercial risks as well i.e. ‘comprehensive cover’. ECA’s 

are involved if commercial banks that are liaised with the industry player as ‘house-bank’ or relationship bank 

would like to support a project or developer in its exports or project development. In case of eligibility of tied aid 

this finance route is more beneficial than others, although compared to solutions within the CAPM-framework.  

National Commercial Banks 

National banks do not play a large role in electricity generation projects. Most finance is coming from abroad in 

hard currency (USD and/or EUR) at terms and conditions (15 to 18 years debt tenors for example) that cannot 

be considered by local banks.  

Without ‘concessional funding’ to local commercial banks the pricing of a loan will compensate fully for inflation, 

so nominal levels often are 25 to 30 % per annum. Tenors are limited to 3 to 5 years. With concessional funding 

from DFIs national banks can be involved in renewable energy and energy efficiency projects and companies. The 

Sunref program (Sunref, 2020) by AFD from France is very successful in providing such ‘green lines’ and technical 

capacity to local commercial banks that on-lend to RE in their countries.  

National banks are perceived to play a much bigger role in the future since it is much better for RE to be financed 

in local currency than in hard currency for 25 years. Also the Covid-19 crisis showed how easily and quickly more 

than USD 50 billion was pulled out of Africa for example just in the first week of the crisis. The spreads on devel-

oping country bonds have been rising sharply in the same period to 400-500 BPS (Basis points (BPS) refers to a 

common unit of measure for interest rates and other %ages in finance. One basis point is equal to 1/100th of 

1 %, or 0.01 %, or 0.0001, and is used to denote the %age change in a financial instrument), while the value of 
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currencies against the dollar has dropped significantly since the beginning of this year (Chen, 2020). Hence the 

developing countries would need more local currency to offset USD-obligations and borrowing more will (and 

has already) become substantially more expensive. 

 Bond Markets 

According to the IMF the African bond markets have been steadily growing in recent years in specific in East 

Africa (Business Daily, 2020), but nonetheless remain undeveloped. African countries would benefit from greater 

access to financing and deeper financial markets. Local currency funding is key for future finance of electricity 

access and bond markets are the step to more local currency issues. At this stage it is, however, not perceived a 

good funding source for SHP although portfolios of SHP might be a good candidate for securitisation for example. 

 Pension Funds 

Pension Funds have long term liabilities which they ideally match with long term income streams, also from an 

investment point of view. Hydropower, also SHP, provides such income streams. Direct lending by pension funds 

to hydropower is not always a possibility but indirectly through for example funds is not uncommon. For example, 

relatively recent (in 2015), an asset manager by the name of ‘Aquila Capital’ launched a fund in Europe with 

dedication to investment in 33 SHP’s specifically targeting pension funds (“the first such fund for institutional 

investors“). The fund aims to achieve returns on its portfolio of 7 to 9 % and it has a lifetime of 20 years (Chestney, 

2015). The fund addresses the shortcomings of some pension funds and other institutional investors to build up 

internal capacities for these infrastructure investments. For emerging markets such capacity would be a bigger 

obstacle and the more reason for similar type of funds with a focus on SHP in emerging markets.  

 Other Funding Possibilities 

It has not gone unnoticed to many that the CAPM restrictions and imperfect financial markets are present in 

many sectors but possibilities to work around them are plenty: 

5.9.1 Development Institutions 

Firstly, many development institutions are not ‘banks’ and as such follow regulations but maybe different from 

banks. Instead they are named ‘International Finance Corporation’, ‘Deutsche Investitions- und Entwick-

lungsgesellschaft’, etc. Secondly, some institutions themselves are named ‘fund’ (‘Swedfund’, ‘Norfund’, etc.) 

and most institutions do use fund-structures to set up new and associated activities that need to adhere to fund-

goals but these goals can deviate from CAPM requirements. Because of this the funds do meet a ready market 

but only for one specific risk-mitigation, a focus-element (gender-equality for example) or product (working cap-

ital for Solar Home System companies for example) because the establishment of the fund could otherwise not 

be justified (often set-up with public sector money through development banks, ministries, etc.). 

5.9.2 Impact Funds 

Impact funds emerged in the last 15 years and are addressing the funding of market assets that hardly had access 

to funding at all and use the CAPM scheme intelligently, i.e. they conform to some extent to its pricing conditions 

to stay part of the development banking community but also deviate enough from the scheme to make the 

impact they’re aiming at. Although impact investors seems to work proprietary in the energy space they cooper-

ate among each other for both, scaling purposes and cost reduction (due diligence - DD). 
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5.9.3 Crowdfunding 

International distributed crowdfunding does not need to follow the CAPM pricing scheme since alternative fi-

nance lenders do not have cost of raising capital and are not bound by the Basel Accords. 

Crowdfunding nowadays is (still) a proprietary exercise, each platform predominantly works for its own investor-

base with its own due diligence and pricing specifics. Hence, a distributed crowdfunding platform (the HYPOSO 

proposal is part of this suggestion) – given access to funding opportunities to all eligible platforms in Europe (or 

the world) – would have the benefit of access to the end-private sector lenders, would increase a standardised 

risk asset class and could reduce DD cost tremendously.  

The UK government has been one of the first donors understanding the power of crowdfunding for Africa. It 

experimented with an ‘Allied Exchange Debt’ platform, not issued yet, for syndicated crowdfunding to African 

projects. It also understands risk related to lending in Africa cannot be fully shifted to lenders in Europe and 

therefore provides amongst others first loss positions in solar-based projects in Africa with crowdfunding plat-

forms in Europe. Crowdfunding is increasingly perceived to become a mainstream solution for funding: „Innova-

tions such as crowdfunding and aggregation are opening PPA markets to more participants.“ (REN 21, Global 

Status Report, Renewables 2020). 

5.9.4 Blockchain 

The digital revolution in combination with alternative finance, maybe as a complement to existing funding 

sources, holds the prospect to completely redefine funding to (smaller) renewable energy projects. Given the 

current absence of long term private sector funding in SSA, it allows to identify a new source of private long-term 

finance for infrastructure investments - distributed private finance. It also holds the prospect, if not done rightly, 

to scare away the private sector. Redefining the financial landscape is based on the following building blocks: 

• Blockchain technology enables supply contracts to be made with each end-user. This integration, combined 

with net-metering and pay-as-you-go models allows to fund projects directly on the basis of a pool of end-

users through a block chain contract. In principal there would not be geographical boundaries. For example 

10,000 end-users of 3 mini-grids in Benin, Madagascar and Burundi could be bundled this way. No utility 

risk anymore, no government guarantees, termination payments, partial risk guarantee programmes, etc.  

• A blockchain contract is probably the most secure way to avoid corruption, making projects more bankable 

that way. 

Cryptocoin issues are for all investors in the world, but cryptocoins are volatile. 

5.9.5 Community Organisations 

In Europe community organisation and funding is popular with respect to renewable energy generation and 

sometimes more than encouraged in for example tenders organised by municipalities (encouraging to open the 

opportunity for lending or ownership to the local community). 

In specific the works of C40 relate to this area where cities are taken as the starting point for renewable energy 

generation and energy efficiency measures. The C40 initiative is already a ‘community’ initiative through which 

96 cities are connected that represent no less than 700+ million citizens and one quarter of the global economy. 

Hydropower solutions are part of the solutions. C40 integrates financial solutions in its initiative (C40 Cities, 

2020). 
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 Summary 

SHP provides for reliable power, has a strong local economic development impact, is green and resilient. Increas-

ingly complex environmental and social constraints and rising costs (both absolute and relative to other renew-

ables) all are increasing the challenges to further hydropower development but maybe less so for small-scale 

hydropower generation.  

Finance-ability of SHP is difficult because of the size of projects and often developers are involved without suffi-

cient own-capital. If projects are bundled the size can be overcome as an issue. Ownership cannot be easily 

bundled if one would like to support local entrepreneurship, however, debt finance can be grouped. Hence, a 

green line to a local bank that funds a portfolio of SHPs provides for a viable funding route. Such bank(s) can be 

selected in countries that have enabling environments through feed-in schemes where tariffs are known. Lending 

raised to fund the local bank can come from development finance institutions but equally from a group of coop-

erating European crowdfunding sites, as is proposed by HYPOSO.  

Dedicated funds and impact investors showed that finance of portfolio of SHPs is possible. Some development 

banks showed that funding of individual SHP is also doable. Notable the development institute from Norway, 

Norfund, has implemented a focussed action on financing SHPs in Africa. Institutions that are able to package 

portfolio solutions exist (this is done successfully by for example the development institute IFC, member of the 

World Bank Group) and scaling to the private sector seems very well possible. It is recognized that preparation is 

key to further scaling of SHP. HYPOSO adds to this, but also an increasing number of parties focus on the prepa-

ration of credit applications and the development steps prior to that as well. The International Hydropower As-

sociation for example offers a development facility for SHPs. 
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6 Conclusion 

This handbook is the result of joint effort of a group of European experts involved in the EU funded HYPOSO 

project with the full name “HYdroPOwer SOlutions for developing and emerging countries”. The purpose of the 

project is to assist sharing the European small hydro know-how in these countries in order to achieve important 

social, economic and environmental goals, such as reliable supply of electricity to some remote areas, developing 

core components of locally balanced electrical mini grids, boosting the local economic growth and/or increasing 

its sustainability by replacing the already available Diesel engine based electricity supply with that based on lo-

cally available renewable energy potential and emission-free technology. Some further benefits following from 

developing small hydropower systems have been outlined in the first two chapters of this handbook. 

At the time this text is being written (in 2020), project activities are conducted in 5 target countries: Bolivia, 

Colombia and Ecuador in Latin America, and Cameroon and Uganda in Africa. All of them are represented in the 

project consortium by relevant educational and research institutions or national hydropower associations. It is 

to be borne in mind that hydropower is already not only present in the target countries, but also acts as a signif-

icant or even leading national supplier of electricity (Bolivia – 26.9 %; Colombia - 77.6 %; Ecuador - 76.3 %; Cam-

eroon - 73 %; Uganda – 91 %;) (Hydropower & Dams, 2020). On the other hand the total generation is often 

insufficient to meet the needs of emerging economies and the population access to electricity is quite diverse 

(Bolivia – 90 % with 72 % in rural areas; Colombia – 100 %; Ecuador – nearly 100 %; Cameroon – 60 % with 21 % 

in rural areas; Uganda – 15 % with 7 % in rural areas) (Liu et al., WSHPDR, 2019). Furthermore, the existing access 

to electricity is often burdened with insufficient capacities and the need to erect long and expensive transmission 

lines or Diesel engine based local power plants. In all these circumstances the use of locally available small hy-

dropower potential may reveal its full beneficial features. 

Small hydropower installations are not just miniaturized copies of the large ones as keeping the specific invest-

ment and O&M cost at acceptable level requires often simple, but ingenious and well-proven technology. The 

top priorities are often shifted from high maximum efficiency to high flexibility and reliability - features essential 

in case of self-balancing mini grids and allowing to decrease the O&M costs by remote control. Lowering the 

unwanted environmental impact is eased due to the project scale and possible use of some techniques hardly 

applicable in case of large hydro.  

The European industry has a long tradition in developing technologies dedicated exclusively to small hydro ap-

plications in addition to those typical for the large hydro sector. It is probably enough to mention the crossflow 

and Turgo turbines, both developed over a century ago. Development of small hydro technology accelerated in 

the end of the 1970s, mainly as a part of global reaction to the world oil crisis. The trend was especially visible in 

the low head applications as Kaplan and semi-Kaplan units were introduced in various configurations into the 

production programmes of even the largest turbine manufacturers. The next stimulus came at the turn of the 

1980s and 1990s – this time as a part of a general trend to increase the contribution of renewables to the energy 

mix while keeping care of local environmental impact. Introducing the Archimedes screw based units has ap-

peared a major business success, but a lot of research effort has been put into development of some other fish-

friendly designs, including VLH and hydrokinetic units. Meeting the ever rising environmental requirements, in-

cluding preserving biological continuity of water courses and sediment transportation capabilities have stimu-

lated recently a lot of relevant progress in the design of not only hydraulic units, but also civil engineering works 

and various auxiliary arrangements. At the current stage of development the European SHP industry has all tech-

nical solutions needed to harness sustainably hydropower potentials worldwide. Even for the so called hidden 

hydro, many concepts exist nowadays. An incomprehensive overview of the available technology has been given 

in chapter 3 of this publication. 

It should be emphasized that a major portion of the recent progress would have never taken place if not the 

consequent, multiyear research & development policy of European governments and European Commission. 

With this effort done, the time has come to share even more intensely the available results with partners in Africa 
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and Latin America for the sake of joint benefit of technology suppliers, national SHP developers, welfare of local 

communities and sustainable economic growth of the target countries. It is a strong belief of the authors that 

linking technology transfer with capacity building activities and reliable, long lasting cooperation with European 

partners will form a good opportunity for small hydropower industry development in the target countries and 

spreading the resulting expertise in the neighbouring regions. 

For this purpose, the methodology adopted within the HYPOSO project assumes bringing together relevant ac-

tors from the EU hydropower sector with stakeholders in the selected countries as well as education of new 

hydropower experts through capacity building activities. The core component of the approach are GIS based 

studies of small hydropower potential as well as local administrative and economic constraints, and preparing 

prefeasibility studies for erecting small hydro installations with the use of European technology. Local stakehold-

ers are expected to launch the projects as pilot ones. Local stakeholders as well as active and potential SHP 

developers and investors are also among key addressees of this book, and especially chapters 4 and 5 in which 

the most important steps during the SHP development process as well as available international financing 

schemes have been described, respectively. The authors expect this publication to appear helpful in their activi-

ties.  

Except the general guidelines on SHP plant development schedule, as discussed in chapter 4, at no stage of their 

work did the authors endeavor this publication to compete with classic engineering textbooks on developing 

hydropower installations and design, construction or exploitation of any of their components. Instead, the con-

cept of this publication was to overview the small hydropower related know-how as offered by the European 

industry as well as numerous design and consulting offices and institutions. Special attention was paid to recent 

advances which may be the reason of some imbalance in discussing various SHP related technologies. On the 

other hand, such technologies as digital control of hydropower plants, including diagnostic systems and optimi-

zation algorithms, may have received less attention than deserved due to especially swift progress taking place 

over the recent decades.  

As the book is addressed to a very wide circle of readers, some of them without an engineering background, the 

technical information on hydraulic units and their characteristics has been preceded by explaining some funda-

mental concepts and allowing thus to understand properly the next sections. By following this approach the 

authors hope to contribute also to rising the interest in hydropower technologies among the readers not directly 

related to the sector. Readers who want to find out more or who have questions are welcome to get in contact 

with the HYPOSO project team. Critical remarks helpful in preparing possible updates of this publication are also 

welcome. 

Further information on the HYPOSO project can be found at the www.hyposo.eu website. 

 

HYPOSO Team 

Munich, December 2020 

 

http://www.hyposo.eu/
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