Hydropower Solutions HYPOSO

www.hyposo.eu #hyposo2020

WORK PACKAGE 5 – 15 PREFEASIBILITY STUDIES

Uganda, Cameroon, Bolivia, Ecuador, Colombia

Presentation by Bernhard Pelikan (Frosio Next s.r.l.) 12 May 2023; Delft

> www.hyposo.eu #hyposo2020

A pre-feasibility study is conducted first to sort out relevant alternatives. (Sorting out not feasible ideas will save time and money).

A pre-feasibility study is a preliminary systematic assessment of all critical elements of the project

- technical solution
- costs
- environmental impacts
- social impacts.

- 1 Introduction
- 2 General regional description

Geography,

Social structure

Energy consumption

Climate

3 General site description

Selected river and site location

Existing studies or projects

Available mapping

4 Hydrology

Catchment area

Gauging stations (precipitation, discharge)

Available data

5 Layout alternatives

Setting of selection criteria

Setting of alternatives

Final layout of selected solution

6 Project description

Main data (head, discharge, power, production)

Components design

Socio-environmental aspects

Cost estimation

7 Feasibility check and risk analysis

Legal feasibility,

Technical feasibility,

Financial feasibility,

Environmental feasibility,

Political feasibility,

Organisational feasibility,

Resources related feasibility,

Socio-Economic feasibility

- 3 Conclusions and recommendations
- 9 Drawings

Selection Criteria

	Bes	t suita	able	locat	ion	ot	intake	
--	------------	---------	------	-------	-----	----	--------	--

Access road

Function

Space available

Simplicity of civil works necessary

Geological conditions

Minimised cost

Land ownership

Best possible location of powerhouse

Access road

Simplicity of civil works necessary

Geological conditions

Minimised cost

Distance to grid/transformer

Land ownership

Trace of pipeline/channel

Access road

Level of difficulty to build

Geological conditions

Land ownership

Optimisation of head / power

Minimisation of construction works

Safety

Low maintenance solutions

Minimisation of environmental

and social impact

Reserved flow

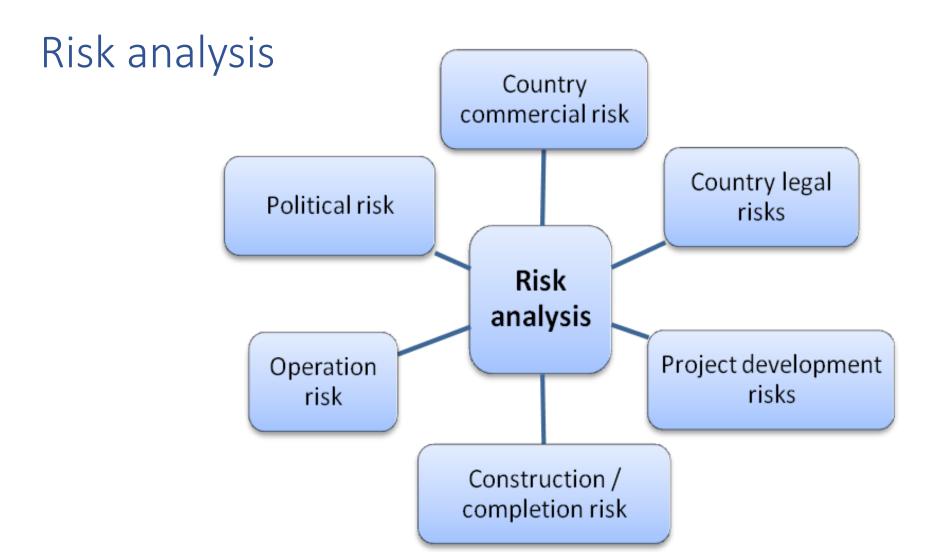
Fish bypassing

Backwater area

Water abstraction by local people

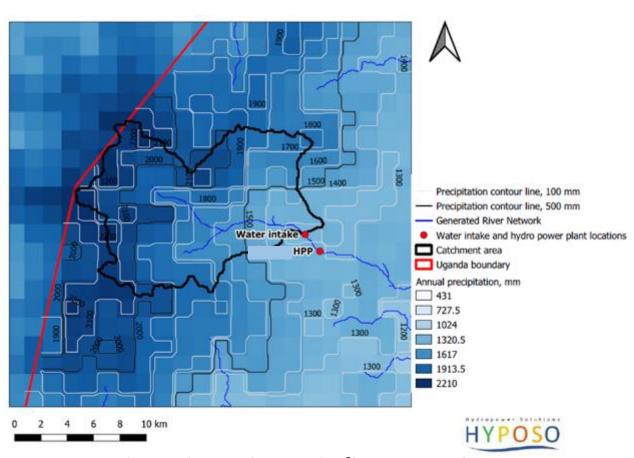
Fisheries by local people

Washing and leisure activities

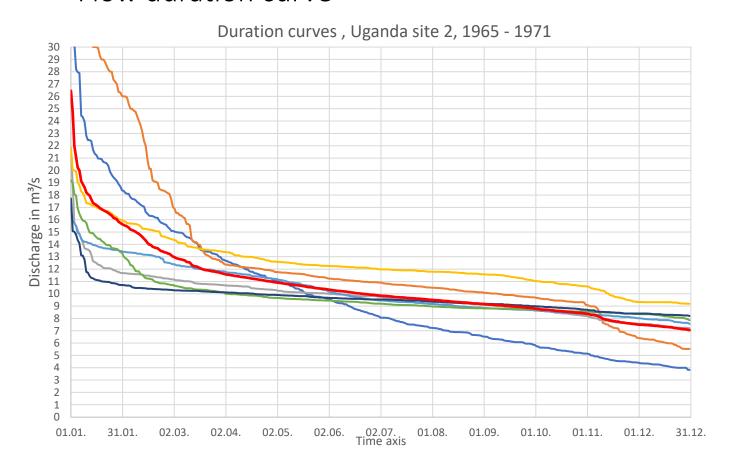

Feasibility check

Feasibility check							
Project:							
Description		easy	doable	mean	complex	difficult	Justification of the evaluation
l lity	Permissions necessary						
Legal feasibility	Land ownership						
l	Import /export						
= >	Accessibility						
Technical feasibility	Geological stability						
rech easi	Special constructions						
.	Grid connection						
ial lity	Investor availability						
Financial feasibility	Loans						
Fir fea	Financing model						
ıme lity	Protected areas						
Environme ntal feasibility	Environmental impact						
En. fea	Mitigation measures						

	_ :	>	Stakeholder opinion			
	Political		Financial support			
	Political feasibility		Cultural and social considerations			
sati	<u>; </u>	lity	Project ownership			
Organisati	onal	sibil	Project ownership Project management Maintenance			
C)	fea	Maintenance			
Š,	3 _	ίγ	Manpower			
Resources	related	feasibility	Construction material			
Resc	le l	feas	Equipment and machinery			
-0	mic	ility	Local population opinion			
Socio	Economic	asib	opinion Added value			
	ΕC	fe	Workplace			



Uganda Precipitation


The mean annual precipitation in the catchment (152,15 km²) is estimated at 1800 mm.

Uganda Flow duration curve

The mean flow is calculated with approximately 10 m³/s.

Uganda

Typology: mean head, run of river, diversion

Main data:

Rated head: 125 m

Rated flow: 9,00 m³/s

Period of exceedance is approximately 200 days

River gradient: 6,25 %

Overall efficiency: 80% (estimated)

Rated power: 9 MW

Annual electricity generation: approx. 60 GWh/a

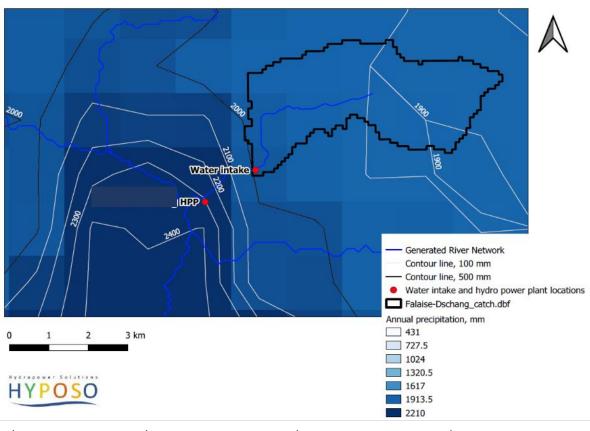
Capacity factor: 0,67

Total investment cost: 18.645.000 €

Specific investment cost: 0,31 €/kWh or 2.071 €/kW

Comment: Excellent mean head project, intake solution is crucial, hydrology

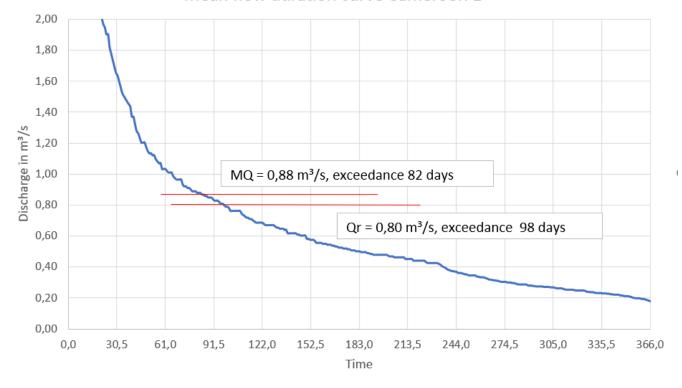
tbc.



Cameroon

Precipitation

The mean annual precipitation in the respective catchment ranges at 1900 mm per year



Cameroon

Flow duration curve

Mean flow duration curve Cameroon 1

Hydropower Solutions HYPOSO

Cameroon

Typology: High head, run of river, diversion

Main data:

Rated head: 495 m

Rated flow: 800 l/s

Period of exceedance: 89 days

River gradient: 35 %

Overall efficiency: 80% (estimated)

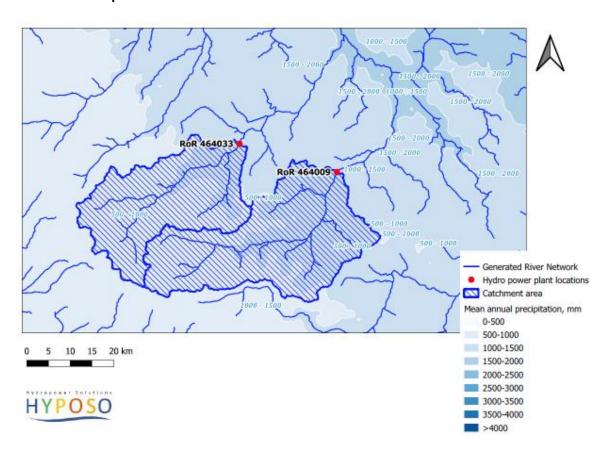
Rated power: 3,14 MW

Annual electricity generation: 15,7 GWh

Capacity factor: 0,58

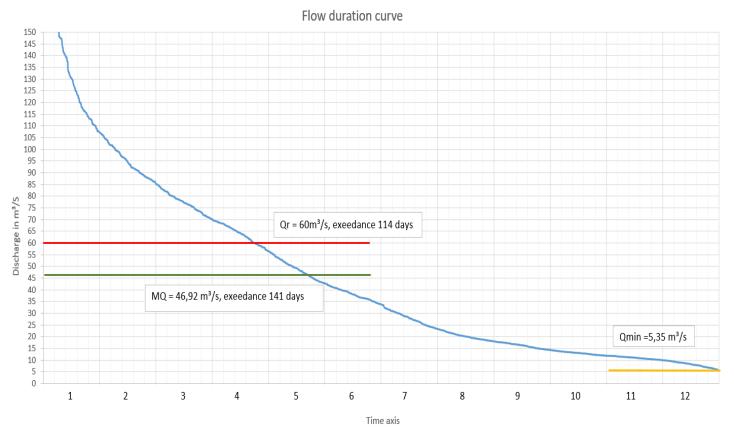
Total investment cost: 8.481.000 €

Specific investment cost: 0,54 €/kWh or 2.700 €/kW


Comment: Excellent high head project, challenging pipeline trace

Bolivia Precipitation

The mean annual precipitation in the respective catchment ranges at 850 mm per year



Bolivia

Flow duration curve

Bolivia

Typology: Mean head, storage, dam

Main data:

Rated head: 73,2 m

Rated flow: 70 m³/s

Period of exceedance: 114 days

River gradient: 1,2 %

Overall efficiency: 80% (estimated)

Rated power: 40 MW

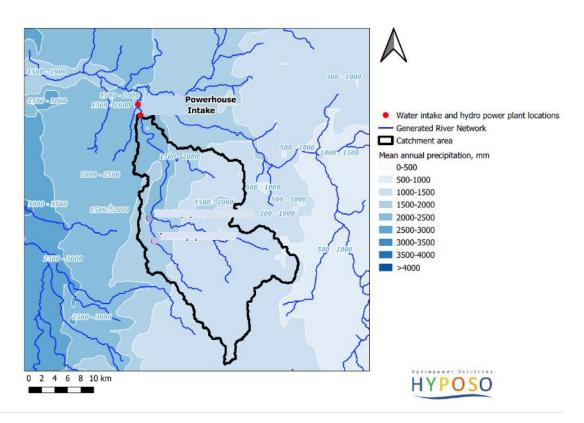
Annual electricity generation: 228 GWh

Capacity factor: 0,65

Total investment cost: 333.000.000 €

Specific investment cost: 1,46 €/kWh or 8.325 €/kW

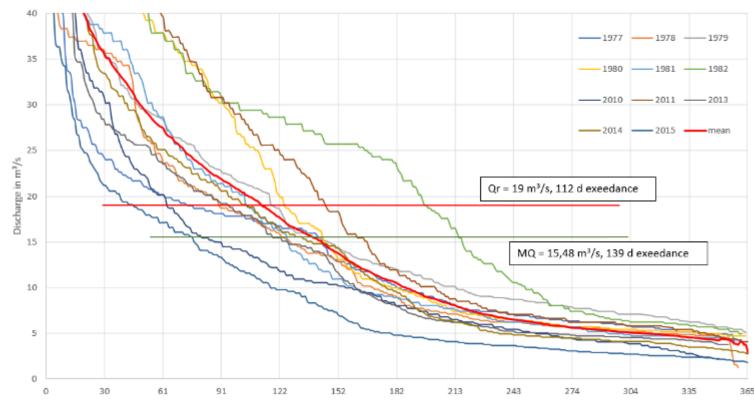
Comment: Interesting mean head storage project



Ecuador

Precipitation

The mean annual precipitation in the respective catchment ranges at 1500 mm per year



Ecuador

Flow duration curve

Flow duration curves

Ecuador

Typology: High head, run of river, diversion

Main data:

Rated head: 172,3 m

Rated flow: 19 m³/s

Period of exceedance: 112 days

River gradient: 2,36 %

Overall efficiency: 80% (estimated)

Rated power: 25,7 MW

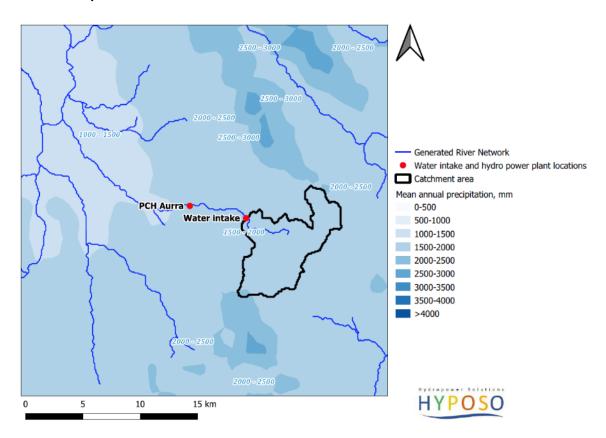
Annual electricity generation: 119,5 GWh

Capacity factor: 0,53

Total investment cost: 59.000.000 €

Specific investment cost: 0,49 €/kWh or 2.296 €/kW

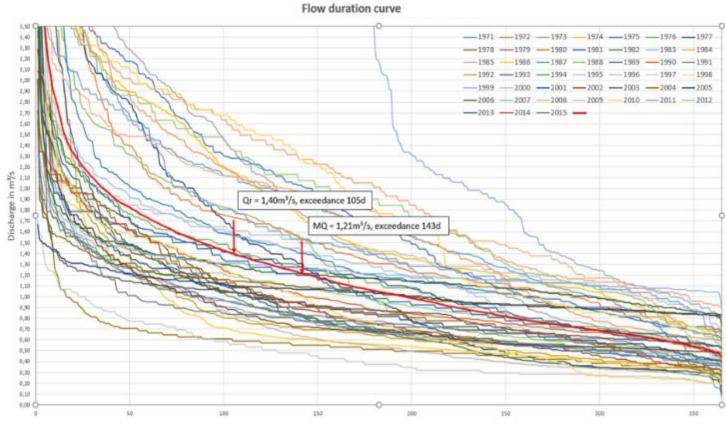
Comment: Very interesting high head project



Colombia

Precipitation

The mean annual precipitation in the respective catchment ranges at 1750 mm per year



Colombia

Flow duration curve

Colombia

Typology: High head, run of river, diversion

Main data:

Rated head: 1368,7 m

Rated flow: 1,4 m³/s

Period of exceedance: 105 days

River gradient: 20 %

Overall efficiency: 80% (estimated)

Rated power: 15,4 MW

Annual electricity generation: 86 GWh

Capacity factor: 0,65

Total investment cost: 25.300.000 €

Specific investment cost: 0,29 €/kWh or 1.643 €/kW

Comment: Very interesting high head project

Conclusions

- The great majority of the sites is economically very attractive
- The projects investigated are already quite well developed
- The further on project development needs local contact persons these persons are available and reliable
- Although all plants will be grid-connected, there will be some local electricity consumption to be covered
- All projects will respect and meet local needs of the population
- If these needs are met on an adequate level, the population will support the projects
- It is recommended to get local communities as partners
- Due to the fact that most of the plants will exploit excellent natural potential the cost will be relatively low
- Responsible hydropower exploitation will support the next generations

Thank you!

www.hyposo.eu #hyposo2020

