

GIS techniques as applied for planning small hydro projects in remote areas

P. Punys, A. Dumbrauskas, **G. Vyčienė**, L. Jurevičius, A. Balčiūnas Water Engineering Department, Vytautas Magnus University, Kowno, Litwa

EU HORIZON 2020 research and innovation programme under grant agreement No 857851

Introduction

- Assessment of SHP sites for development represents a high proportion of overall project costs. Moreover, the sites are often located in remote areas with limited access to engineering teams.
- The advent of GIS technologies has enormous use to capture the range of spatial information at a catchment level for hydropower purposes. The assessment is carried out automatically using the GIS tool (e.g., ArcGIS Spatial Analyst etc.).

EU HORIZON 2020 research and innovation programme under grant agreement No 857851

Introduction

- A number of countries using advanced GIS technology developed interactive web-based maps of hydropower resources (e.g., US ORNL HydroSource Data Explorer; GECOsistema: Pan-European small hydropower atlas).
- Available at online platforms indicating individual site locations and various key datasets energy, hydrology, environmental and economic parameters, enabling users to freely and instantaneously obtain the necessary information.
- Hydropower atlases (map viewers) are primarily published on commercial ESRI ArcGIS, ArcGIS Online, Google Earth or open-source QGIS software.
- In some parts and countries of the African continent GIS-based hydropower resource mapping viewers are available in West Africa (e. g., ECOWAS ECREEE & Pöyry: GIS Hydro Resource Mapping in West Africa), Tanzania, and Madagascar. In Colombia (Latin America): Atlas of Colombia's Hydropower Potential.

Objective: To develop a web-based map of hydropower resources (or interactive hydropower atlas) in the selected countries of Africa and Latin America (Cameroon and Uganda, Bolivia, Colombia and Ecuador).

Specific objectives:

- To collect topographic, hydrographic, hydrological, climate, hydropower and environmental data in geospatial format.
- To create the digital elevation model (DEM) and delineate river network and catchment and sub-catchment areas and develop longitudinal profiles of streams.
- To model stream-reach theoretical hydropower potential.
- To identify some 2,500 potential hydropower sites with their key datasets.
- To publish collected and modelled geospatial data onto an openaccess web-based platform.

Methodology

River network generation and catchment delineation. To solve this task we applied well known gravitation-based model.

D.G. Tarboton, R.L. Bras, I. Rodriguez-Iturbe On the extraction of channel networks from digital elevation data Hydrol. Process. (1991), pp. 81-100

Flow direction procedure based on the D8 flow method.

212	193	169	160	212	193	169	160	212	193	169	160
205	182	160	165	205	182	160	165	205	182	160	165
200	176	168	122	200	176	168	122	200	176	168	122
208	187	166	150	208	187	166	150	208	187	166	150

"Hydrologically correct" DEM is required for this procedure. Pits must be "filled up", otherwise flow stops at the pit. This method assigns flow direction to the steepest downslope neighbor using 3*3 cell filter.

EU HORIZON 2020 research and innovation programme under grant agreement No 857851

Methodology

Flow Accumulation

River network and catchments

This algorithm is realized in number of GIS software like ESRI ArcGIS or open source QGIS.

EU HORIZON 2020 research and innovation programme under grant agreement No 857851

Flow direction

Methodology

Attributes for each river segment

 $P = g^*Q^*H$

A – catchment area, km^2 Q - flow rate (monthly or annual) H – elevation head, mP – stream reach power, kWg – gravitational acceleration

What attributes we have today: For each 2500 m length segment At the start and at the end

 $Q = q^*A$

Averaged sub catchment theoretical HP potential (MW)

At both ends of segment	Averaged value for segment
Elevation m	Gradient H m
Catchment area km ²	Slope
Flow rate Q m ³ /s	Theoretical hydropower potential (MW)
	Specific HP potential MW/km

EU HORIZON 2020 research and innovation programme under grant agreement No 857851

HYPOSO Map Layers (ca 40)

TDB

	No	Group							
1		Base map		1.1					
				1.2	Open topo map				
				1.3	Satellite imagery				
	2 Background & Infrastructure			2.1	National Boundaries				
				2.2	Protected Areas				
				2.3 Power Grid					
	3	Operational Hydropower	plants	3.1	Large Hydro (>100 MW)				
		(HPP) and under construct	LION	3.2	Medium Hydro (>50 to 100				
				3.3	Intermediate Hydro (>10 to				
				3.4	Small Hydro (>1 to 10 MW)				
				3.5	Micro and Mini Hydro (500				
	4 Climate and Hydrology			4.1	Climate Zones				
				4.2	River Basins				
				4.3	Stream Order				
				4.4	Catchments				
				4.5	Gauging Stations				
				4.6 Mean Annual Precipitation					
					Mean Annual Flow				
_							-		
No	Group	0			1st layer	2nd layer			
5	Hydro	power (HP) Resources	5.1	HP poten	tial sites	5.1.1. Plan	5.1.1. Planned HPP		
	(Potential)					5.1.2. New	5.1.2. New site		
						5.1.3. Retro	5.1.3. Retrofitting of existing		
						dams (nor	dams (non-powered dam, weir		
						5.1.4. Obso	5.1.4. Obsolete HP plant		
	5 5 5 5 5 5			HP potential from New Stream-Res					
				Develop	ment (NSD) in MW		arget: ca		
				Aggregat	ed catchment HP potential	_` '	2.500 sites		
~				Specific	HP potential MW/km	- 2			
6	Climat	e change impact on	6.1	Near Fut	ure HP potential at catchmen				
	change projections			rever (sh	ort term)				
				Far Futur	e HP potential at catchment				
				level (lor	ng term)				

HYPOSO Map

HYPOSO

Splitting rivers into segments of 2.5 km

To make easy this cumbersome job, the ArcGIS Pro tool was developed, which can complete all these procedures

HYPOSO WEB BASED INTERACTIVE MAP

Frontpage of the HYPOSO web map viewer

Generated small catchments for Uganda. A 143.8 square kilometres catchment boundary is shown.

The Hyposo map – a web-based platform, is an open-source GeoServer software.

It allows users to input, process and publish geospatial data and supports data interchange from most spatial data sources using open standards.

Transmission and distribution grid

River basins

Gauging stations

The theoretical potential of a river

Operational hydropower plants in Ecuador

Available geospatial data sets can be explored and visualised by zooming, panning, and clicking on the map layers or icons to open the legend to this map. In addition, there is a possibility to download the geodata in KML or Shape format. HYPOSO

=

HYPOSO Map

Potential hydropower sites (a pop-up providing a brief description)

EU HORIZON 2020 research and innovation programme under grant agreement No 857851

Specific discharge

HYPOSO Map

Description: Catchment 3000 Group:

Legend < 25</p> 25 - 100 100 - 500 500 - 1000 1000 - 5000 5000 - 10000 > 10000

Aggregated catchment power

HYPOSO Map

This virtual hydropower atlas will be only a kind of discovery, identifying sites worthy of further investigation automatically. The estimates modelled and derived will not represent the actual numbers feasible for engineering design. It will be the users sole responsibility to determine whether any site or river reach is worthy of further investment.

EU HORIZON 2020 research and innovation programme under grant agreement No 857851

Concluding remarks

- The Hyposo web map viewer software is still a beta version and the geospatial data sets are being filled with new entries.
- Due to large areas of the countries and modest financial and human resources allocated for this project, detailed river basin hydrological modelling was not performed. To characterise the mean annual river flow the specific discharge (l/s·km² or m³/s·km²) was mapped.
- The anticipation of long-term trends in climate change is of utmost procedure for thoroughly planning hydropower development.
- Uncertainties in such hydropower assessment study will be addressed in the future.
- The Hyposo web map viewer will be available on the HYPOSO project website this year (<u>https://www.hyposo.eu/en/home/</u>).

Thank you for attention Dziękuję za uwagę

EU HORIZON 2020 research and innovation programme under grant agreement No 857851 Hydropower Solutions

